A novel surface deformation prediction method based on AWC-LSTM model

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences
Yu Chen, Xinlong Chen, Shanchuan Guo, Huaizhan Li, Peijun Du
{"title":"A novel surface deformation prediction method based on AWC-LSTM model","authors":"Yu Chen, Xinlong Chen, Shanchuan Guo, Huaizhan Li, Peijun Du","doi":"10.1016/j.jag.2024.104292","DOIUrl":null,"url":null,"abstract":"Severe surface deformation can damage the ecological environment, trigger geological disasters, and threaten human life and property. Reliable surface deformation prediction is conducive to reducing potential risks and mitigating disaster losses. Currently, machine learning-based surface deformation prediction models have shown significant improvements in prediction performance. However, most prediction models do not sufficiently consider the characteristics of surface deformation, exhibit subjectivity in parameter settings, and inadequately capture local features in time series data. We introduce the AWC-LSTM model to predict surface deformation. Initially, leveraging the strengths of the autoregressive integrated moving average (ARIMA) model in handling linear signals, the obtained surface deformation information is decomposed to linear and nonlinear parts, and the linear part is predicted. Secondly, by incorporating convolutional neural network (CNN) layers into the long short term memory (LSTM) model, the ability to learn local features is enhanced and the whale optimization algorithm (WOA) is introduced to determine the optimal hyperparameters of the model, thereby predicting nonlinear deformation. The proposed AWC-LSTM model was validated using the Shilawusu coal mine and Beijing as case studies. The outcomes indicate that the deformation predictions for the Shilawusu coal mine and Beijing exhibit a high degree of consistency with the monitored data, with root mean square errors (RMSE) not exceeding 3 mm. This underscores the model’s reliability and applicability across different areas. Comparisons with existing prediction models indicate that the AWC-LSTM model achieves higher predictive accuracy, with an average improvement in accuracy ranging from 28.38 % to 80.59 % over other models.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"18 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104292","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Severe surface deformation can damage the ecological environment, trigger geological disasters, and threaten human life and property. Reliable surface deformation prediction is conducive to reducing potential risks and mitigating disaster losses. Currently, machine learning-based surface deformation prediction models have shown significant improvements in prediction performance. However, most prediction models do not sufficiently consider the characteristics of surface deformation, exhibit subjectivity in parameter settings, and inadequately capture local features in time series data. We introduce the AWC-LSTM model to predict surface deformation. Initially, leveraging the strengths of the autoregressive integrated moving average (ARIMA) model in handling linear signals, the obtained surface deformation information is decomposed to linear and nonlinear parts, and the linear part is predicted. Secondly, by incorporating convolutional neural network (CNN) layers into the long short term memory (LSTM) model, the ability to learn local features is enhanced and the whale optimization algorithm (WOA) is introduced to determine the optimal hyperparameters of the model, thereby predicting nonlinear deformation. The proposed AWC-LSTM model was validated using the Shilawusu coal mine and Beijing as case studies. The outcomes indicate that the deformation predictions for the Shilawusu coal mine and Beijing exhibit a high degree of consistency with the monitored data, with root mean square errors (RMSE) not exceeding 3 mm. This underscores the model’s reliability and applicability across different areas. Comparisons with existing prediction models indicate that the AWC-LSTM model achieves higher predictive accuracy, with an average improvement in accuracy ranging from 28.38 % to 80.59 % over other models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信