Yu Zhang , Danyang Li , Guowei Zhou , Luyang Tao , Zhuangzhuang Liu , Guohua Fan , Hao Wu
{"title":"Unusual hardening mediated by {10–12} twins of strongly textured titanium at cryogenic temperature","authors":"Yu Zhang , Danyang Li , Guowei Zhou , Luyang Tao , Zhuangzhuang Liu , Guohua Fan , Hao Wu","doi":"10.1016/j.ijplas.2024.104206","DOIUrl":null,"url":null,"abstract":"<div><div>{10–12} twinning is an important deformation mechanism for hexagonal metals; however, its characteristically low critical stress and resulting high twin activity often lead to rapid strain localization and premature failure. Therefore, this study aims to strategically delay {10–12} twinning at the initial deformation stage to prevent the strain localization, and concurrently seeks to reactivate {10–12} twinning at the large deformation stage to facilitate continuous hardening. Guided by these dual objectives, we selected rolled titanium as the model material and designed the loading direction to minimize the Schmid factor of {10–12} twinning, and then introduced cryogenic temperatures as low as 77 K to apply GPa-grade stress, thereby enabling continuous strengthening until the reactivation of {10–12} twinning. Under these specified conditions, the rolled titanium exhibited markedly enhanced mechanical properties; the ultimate strength increased from 618 MPa to 1634 MPa, while the true strain was increased by approximately 0.15 when the temperature was reduced from 298 K to 77 K. More importantly, an unusual strain hardening behavior was experimentally observed at a true strain of 0.16, at which {10–12} twins started to behave as the predominant twinning mechanism. Quantitative analysis further indicated that the large majority of the strain hardening capacity was attributed to high-density {10–12} twins. The present study therefore highlighted the pivotal role of {10–12} twins and offers a novel viewpoint for designing and achieving distinctive mechanical properties through the manipulation of deformation twinning.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"184 ","pages":"Article 104206"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003334","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
{10–12} twinning is an important deformation mechanism for hexagonal metals; however, its characteristically low critical stress and resulting high twin activity often lead to rapid strain localization and premature failure. Therefore, this study aims to strategically delay {10–12} twinning at the initial deformation stage to prevent the strain localization, and concurrently seeks to reactivate {10–12} twinning at the large deformation stage to facilitate continuous hardening. Guided by these dual objectives, we selected rolled titanium as the model material and designed the loading direction to minimize the Schmid factor of {10–12} twinning, and then introduced cryogenic temperatures as low as 77 K to apply GPa-grade stress, thereby enabling continuous strengthening until the reactivation of {10–12} twinning. Under these specified conditions, the rolled titanium exhibited markedly enhanced mechanical properties; the ultimate strength increased from 618 MPa to 1634 MPa, while the true strain was increased by approximately 0.15 when the temperature was reduced from 298 K to 77 K. More importantly, an unusual strain hardening behavior was experimentally observed at a true strain of 0.16, at which {10–12} twins started to behave as the predominant twinning mechanism. Quantitative analysis further indicated that the large majority of the strain hardening capacity was attributed to high-density {10–12} twins. The present study therefore highlighted the pivotal role of {10–12} twins and offers a novel viewpoint for designing and achieving distinctive mechanical properties through the manipulation of deformation twinning.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.