Detecting and Mitigating the Clever Hans Effect in Medical Imaging: A Scoping Review.

Constanza Vásquez-Venegas, Chenwei Wu, Saketh Sundar, Renata Prôa, Francis Joshua Beloy, Jillian Reeze Medina, Megan McNichol, Krishnaveni Parvataneni, Nicholas Kurtzman, Felipe Mirshawka, Marcela Aguirre-Jerez, Daniel K Ebner, Leo Anthony Celi
{"title":"Detecting and Mitigating the Clever Hans Effect in Medical Imaging: A Scoping Review.","authors":"Constanza Vásquez-Venegas, Chenwei Wu, Saketh Sundar, Renata Prôa, Francis Joshua Beloy, Jillian Reeze Medina, Megan McNichol, Krishnaveni Parvataneni, Nicholas Kurtzman, Felipe Mirshawka, Marcela Aguirre-Jerez, Daniel K Ebner, Leo Anthony Celi","doi":"10.1007/s10278-024-01335-z","DOIUrl":null,"url":null,"abstract":"<p><p>The Clever Hans effect occurs when machine learning models rely on spurious correlations instead of clinically relevant features and poses significant challenges to the development of reliable artificial intelligence (AI) systems in medical imaging. This scoping review provides an overview of methods for identifying and addressing the Clever Hans effect in medical imaging AI algorithms. A total of 173 papers published between 2010 and 2024 were reviewed, and 37 articles were selected for detailed analysis, with classification into two categories: detection and mitigation approaches. Detection methods include model-centric, data-centric, and uncertainty and bias-based approaches, while mitigation strategies encompass data manipulation techniques, feature disentanglement and suppression, and domain knowledge-driven approaches. Despite the progress in detecting and mitigating the Clever Hans effect, the majority of current machine learning studies in medical imaging do not report or test for shortcut learning, highlighting the need for more rigorous validation and transparency in AI research. Future research should focus on creating standardized benchmarks, developing automated detection tools, and exploring the integration of detection and mitigation strategies to comprehensively address shortcut learning. Establishing community-driven best practices and leveraging interdisciplinary collaboration will be crucial for ensuring more reliable, generalizable, and equitable AI systems in healthcare.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01335-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Clever Hans effect occurs when machine learning models rely on spurious correlations instead of clinically relevant features and poses significant challenges to the development of reliable artificial intelligence (AI) systems in medical imaging. This scoping review provides an overview of methods for identifying and addressing the Clever Hans effect in medical imaging AI algorithms. A total of 173 papers published between 2010 and 2024 were reviewed, and 37 articles were selected for detailed analysis, with classification into two categories: detection and mitigation approaches. Detection methods include model-centric, data-centric, and uncertainty and bias-based approaches, while mitigation strategies encompass data manipulation techniques, feature disentanglement and suppression, and domain knowledge-driven approaches. Despite the progress in detecting and mitigating the Clever Hans effect, the majority of current machine learning studies in medical imaging do not report or test for shortcut learning, highlighting the need for more rigorous validation and transparency in AI research. Future research should focus on creating standardized benchmarks, developing automated detection tools, and exploring the integration of detection and mitigation strategies to comprehensively address shortcut learning. Establishing community-driven best practices and leveraging interdisciplinary collaboration will be crucial for ensuring more reliable, generalizable, and equitable AI systems in healthcare.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信