Machine learning approaches for predicting craniofacial anomalies with graph neural networks.

Colten Alme, Harun Pirim, Yusuf Akbulut
{"title":"Machine learning approaches for predicting craniofacial anomalies with graph neural networks.","authors":"Colten Alme, Harun Pirim, Yusuf Akbulut","doi":"10.1016/j.compbiolchem.2024.108294","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, multifaceted, and sometimes ever-changing. Therefore, analyzing PPIs and making predictions based on them present significant challenges to traditional computational techniques. However, machine learning, particularly GNNs, with their powerful ability to identify complex patterns within large, convoluted datasets, emerge as compelling and revolutionary tools for unraveling these intricate biological networks. We apply machine learning, aided by SHAP explainability and GNNs, on three networks of distinct sizes, ranging from small to large. While the ML results highlight the higher importance of network features in prediction, GNNs exhibit superior accuracy.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108294"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, multifaceted, and sometimes ever-changing. Therefore, analyzing PPIs and making predictions based on them present significant challenges to traditional computational techniques. However, machine learning, particularly GNNs, with their powerful ability to identify complex patterns within large, convoluted datasets, emerge as compelling and revolutionary tools for unraveling these intricate biological networks. We apply machine learning, aided by SHAP explainability and GNNs, on three networks of distinct sizes, ranging from small to large. While the ML results highlight the higher importance of network features in prediction, GNNs exhibit superior accuracy.

用图神经网络预测颅面异常的机器学习方法。
本研究探索了机器学习算法的使用,包括传统方法和图神经网络(gnn),通过分析蛋白质-蛋白质相互作用来预测某些疾病。蛋白质-蛋白质相互作用(PPIs)是复杂的,多方面的,有时是不断变化的。因此,分析ppi并基于它们进行预测对传统的计算技术提出了重大挑战。然而,机器学习,特别是gnn,凭借其在大型复杂数据集中识别复杂模式的强大能力,成为解开这些复杂生物网络的引人注目和革命性的工具。我们在SHAP可解释性和gnn的帮助下,在三个不同规模的网络上应用机器学习,从小到大。虽然机器学习结果强调了网络特征在预测中的更高重要性,但gnn表现出更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信