Machine learning approaches for predicting craniofacial anomalies with graph neural networks.

Colten Alme, Harun Pirim, Yusuf Akbulut
{"title":"Machine learning approaches for predicting craniofacial anomalies with graph neural networks.","authors":"Colten Alme, Harun Pirim, Yusuf Akbulut","doi":"10.1016/j.compbiolchem.2024.108294","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, multifaceted, and sometimes ever-changing. Therefore, analyzing PPIs and making predictions based on them present significant challenges to traditional computational techniques. However, machine learning, particularly GNNs, with their powerful ability to identify complex patterns within large, convoluted datasets, emerge as compelling and revolutionary tools for unraveling these intricate biological networks. We apply machine learning, aided by SHAP explainability and GNNs, on three networks of distinct sizes, ranging from small to large. While the ML results highlight the higher importance of network features in prediction, GNNs exhibit superior accuracy.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108294"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, multifaceted, and sometimes ever-changing. Therefore, analyzing PPIs and making predictions based on them present significant challenges to traditional computational techniques. However, machine learning, particularly GNNs, with their powerful ability to identify complex patterns within large, convoluted datasets, emerge as compelling and revolutionary tools for unraveling these intricate biological networks. We apply machine learning, aided by SHAP explainability and GNNs, on three networks of distinct sizes, ranging from small to large. While the ML results highlight the higher importance of network features in prediction, GNNs exhibit superior accuracy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信