tp53 R217H and R242H mutant zebrafish exhibit dysfunctional p53 hallmarks and recapitulate Li-Fraumeni syndrome phenotypes.

Kim Kobar, Lissandra Tuzi, Jennifer A Fiene, Erin Burnley, Kristianne J C Galpin, Craig Midgen, Brianne Laverty, Vallijah Subasri, Timmy T Wen, Martin Hirst, Michelle Moksa, Annaick Carles, Qi Cao, Adam Shlien, David Malkin, Sergey V Prykhozhij, Jason N Berman
{"title":"tp53 R217H and R242H mutant zebrafish exhibit dysfunctional p53 hallmarks and recapitulate Li-Fraumeni syndrome phenotypes.","authors":"Kim Kobar, Lissandra Tuzi, Jennifer A Fiene, Erin Burnley, Kristianne J C Galpin, Craig Midgen, Brianne Laverty, Vallijah Subasri, Timmy T Wen, Martin Hirst, Michelle Moksa, Annaick Carles, Qi Cao, Adam Shlien, David Malkin, Sergey V Prykhozhij, Jason N Berman","doi":"10.1016/j.bbadis.2024.167612","DOIUrl":null,"url":null,"abstract":"<p><p>Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with a highly penetrant cancer spectrum characterized by germline TP53 mutations. We characterized the first LFS zebrafish hotspot mutants, tp53 R217H and R242H (human R248H and R273H), and found these mutants exhibit partial-to-no activation of p53 target genes, have defective cell-cycle checkpoints, and display partial-to-full resistance to apoptosis, although the R217H mutation has hypomorphic characteristics. Spontaneous tumor development histologically resembling human sarcomas was observed as early as 6 months. tp53 R242H mutants had a higher lifetime tumor incidence compared to tp53 null and R217H mutants, suggesting it is a more aggressive mutation. We observed mutation-specific tumor phenotypes across tp53 mutants with associated diverse transcriptomic and DNA methylome profiles in tp53 mutant larvae, impacting metabolism, cell signalling, and biomacromolecule synthesis and degradation. These tp53 zebrafish mutants demonstrate fidelity to their human counterparts and provide new insights into underlying tumorigenesis mechanisms and kinetics that suggest metabolic rewiring and cellular signalling changes occur prior to tumor initiation, which will guide targeted therapeutics for LFS.</p>","PeriodicalId":93896,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 3","pages":"167612"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbadis.2024.167612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with a highly penetrant cancer spectrum characterized by germline TP53 mutations. We characterized the first LFS zebrafish hotspot mutants, tp53 R217H and R242H (human R248H and R273H), and found these mutants exhibit partial-to-no activation of p53 target genes, have defective cell-cycle checkpoints, and display partial-to-full resistance to apoptosis, although the R217H mutation has hypomorphic characteristics. Spontaneous tumor development histologically resembling human sarcomas was observed as early as 6 months. tp53 R242H mutants had a higher lifetime tumor incidence compared to tp53 null and R217H mutants, suggesting it is a more aggressive mutation. We observed mutation-specific tumor phenotypes across tp53 mutants with associated diverse transcriptomic and DNA methylome profiles in tp53 mutant larvae, impacting metabolism, cell signalling, and biomacromolecule synthesis and degradation. These tp53 zebrafish mutants demonstrate fidelity to their human counterparts and provide new insights into underlying tumorigenesis mechanisms and kinetics that suggest metabolic rewiring and cellular signalling changes occur prior to tumor initiation, which will guide targeted therapeutics for LFS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信