{"title":"Growth Prediction of Ground-Glass Nodules Based on Pulmonary Vascular Morphology Nomogram.","authors":"Jingyan Wu, Keying Wang, Lin Deng, Hanzhou Tang, Limin Xue, Ting Yang, Jinwei Qiang","doi":"10.1016/j.acra.2024.11.041","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To construct a nomogram combining conventional CT features (CCTFs), morphologically abnormal tumor-related vessels (MATRVs), and clinical features to predict the two-year growth of lung ground-glass nodule (GGN).</p><p><strong>Methods: </strong>High-resolution CT targeted scan images of 158 patients including 167 GGNs from January 2016 to September 2019 were retrospectively analyzed. The CCTF and MATRV of each GGN were recorded. All GGNs were randomly divided into a training set (n = 118) and a validation set (n = 49). Multiple stepwise regression was used to select the features. Multivariate logistic regression was used to construct the CCTF, CCTF-CTRV (category of tumor-related vessel), and CCTF-QTRV (quantity of tumor-related vessel) nomograms. The performance and utility of the nomograms were evaluated using the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA).</p><p><strong>Results: </strong>The AUC of the CCTF-QTRV nomogram, which included the features of smoking history, nodule pattern, lobulation, and the number of distorted and dilated vessels, was higher than the AUCs of the CCTF and CCTF-CTRV nomograms in both the training set (AUC: 0.906 vs. 0.857; vs. 0.851) and the validation set (AUC: 0.909 vs. 0.796; vs. 0.871). DCA indicated that both patients and clinicians could benefit from using the nomogram.</p><p><strong>Conclusion: </strong>The nomogram constructed by combining MATRV, CCTF, and clinical information can more effectively predict the two-year growth of GGNs. This integrated approach enhances the predictive accuracy, making it a valuable tool for clinicians in managing and monitoring patients with GGNs.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: To construct a nomogram combining conventional CT features (CCTFs), morphologically abnormal tumor-related vessels (MATRVs), and clinical features to predict the two-year growth of lung ground-glass nodule (GGN).
Methods: High-resolution CT targeted scan images of 158 patients including 167 GGNs from January 2016 to September 2019 were retrospectively analyzed. The CCTF and MATRV of each GGN were recorded. All GGNs were randomly divided into a training set (n = 118) and a validation set (n = 49). Multiple stepwise regression was used to select the features. Multivariate logistic regression was used to construct the CCTF, CCTF-CTRV (category of tumor-related vessel), and CCTF-QTRV (quantity of tumor-related vessel) nomograms. The performance and utility of the nomograms were evaluated using the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA).
Results: The AUC of the CCTF-QTRV nomogram, which included the features of smoking history, nodule pattern, lobulation, and the number of distorted and dilated vessels, was higher than the AUCs of the CCTF and CCTF-CTRV nomograms in both the training set (AUC: 0.906 vs. 0.857; vs. 0.851) and the validation set (AUC: 0.909 vs. 0.796; vs. 0.871). DCA indicated that both patients and clinicians could benefit from using the nomogram.
Conclusion: The nomogram constructed by combining MATRV, CCTF, and clinical information can more effectively predict the two-year growth of GGNs. This integrated approach enhances the predictive accuracy, making it a valuable tool for clinicians in managing and monitoring patients with GGNs.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.