Deep Learning for Contrast Enhanced Mammography - A Systematic Review.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Vera Sorin, Miri Sklair-Levy, Benjamin S Glicksberg, Eli Konen, Girish N Nadkarni, Eyal Klang
{"title":"Deep Learning for Contrast Enhanced Mammography - A Systematic Review.","authors":"Vera Sorin, Miri Sklair-Levy, Benjamin S Glicksberg, Eli Konen, Girish N Nadkarni, Eyal Klang","doi":"10.1016/j.acra.2024.11.035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is to systematically review the literature on deep learning (DL) applications for CEM, exploring how these models can further enhance CEM diagnostic potential.</p><p><strong>Methods: </strong>This systematic review was reported according to the PRISMA guidelines. We searched for studies published up to April 2024. MEDLINE, Scopus and Google Scholar were used as search databases. Two reviewers independently implemented the search strategy. We included all types of original studies published in English that evaluated DL algorithms for automatic analysis of contrast-enhanced mammography CEM images. The quality of the studies was independently evaluated by two reviewers based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria.</p><p><strong>Results: </strong>Sixteen relevant studies published between 2018 and 2024 were identified. All but one used convolutional neural network models (CNN) models. All studies evaluated DL algorithms for lesion classification, while six studies also assessed lesion detection or segmentation. Segmentation was performed manually in three studies, both manually and automatically in two studies and automatically in ten studies. For lesion classification on retrospective datasets, CNN models reported varied areas under the curve (AUCs) ranging from 0.53 to 0.99. Models incorporating attention mechanism achieved accuracies of 88.1% and 89.1%. Prospective studies reported AUC values of 0.89 and 0.91. Some studies demonstrated that combining DL models with radiomics featured improved classification. Integrating DL algorithms with radiologists' assessments enhanced diagnostic performance.</p><p><strong>Conclusion: </strong>While still at an early research stage, DL can improve CEM diagnostic precision. However, there is a relatively small number of studies evaluating different DL algorithms, and most studies are retrospective. Further prospective testing to assess performance of applications at actual clinical setting is warranted.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is to systematically review the literature on deep learning (DL) applications for CEM, exploring how these models can further enhance CEM diagnostic potential.

Methods: This systematic review was reported according to the PRISMA guidelines. We searched for studies published up to April 2024. MEDLINE, Scopus and Google Scholar were used as search databases. Two reviewers independently implemented the search strategy. We included all types of original studies published in English that evaluated DL algorithms for automatic analysis of contrast-enhanced mammography CEM images. The quality of the studies was independently evaluated by two reviewers based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria.

Results: Sixteen relevant studies published between 2018 and 2024 were identified. All but one used convolutional neural network models (CNN) models. All studies evaluated DL algorithms for lesion classification, while six studies also assessed lesion detection or segmentation. Segmentation was performed manually in three studies, both manually and automatically in two studies and automatically in ten studies. For lesion classification on retrospective datasets, CNN models reported varied areas under the curve (AUCs) ranging from 0.53 to 0.99. Models incorporating attention mechanism achieved accuracies of 88.1% and 89.1%. Prospective studies reported AUC values of 0.89 and 0.91. Some studies demonstrated that combining DL models with radiomics featured improved classification. Integrating DL algorithms with radiologists' assessments enhanced diagnostic performance.

Conclusion: While still at an early research stage, DL can improve CEM diagnostic precision. However, there is a relatively small number of studies evaluating different DL algorithms, and most studies are retrospective. Further prospective testing to assess performance of applications at actual clinical setting is warranted.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信