Vera Sorin, Miri Sklair-Levy, Benjamin S Glicksberg, Eli Konen, Girish N Nadkarni, Eyal Klang
{"title":"Deep Learning for Contrast Enhanced Mammography - A Systematic Review.","authors":"Vera Sorin, Miri Sklair-Levy, Benjamin S Glicksberg, Eli Konen, Girish N Nadkarni, Eyal Klang","doi":"10.1016/j.acra.2024.11.035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is to systematically review the literature on deep learning (DL) applications for CEM, exploring how these models can further enhance CEM diagnostic potential.</p><p><strong>Methods: </strong>This systematic review was reported according to the PRISMA guidelines. We searched for studies published up to April 2024. MEDLINE, Scopus and Google Scholar were used as search databases. Two reviewers independently implemented the search strategy. We included all types of original studies published in English that evaluated DL algorithms for automatic analysis of contrast-enhanced mammography CEM images. The quality of the studies was independently evaluated by two reviewers based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria.</p><p><strong>Results: </strong>Sixteen relevant studies published between 2018 and 2024 were identified. All but one used convolutional neural network models (CNN) models. All studies evaluated DL algorithms for lesion classification, while six studies also assessed lesion detection or segmentation. Segmentation was performed manually in three studies, both manually and automatically in two studies and automatically in ten studies. For lesion classification on retrospective datasets, CNN models reported varied areas under the curve (AUCs) ranging from 0.53 to 0.99. Models incorporating attention mechanism achieved accuracies of 88.1% and 89.1%. Prospective studies reported AUC values of 0.89 and 0.91. Some studies demonstrated that combining DL models with radiomics featured improved classification. Integrating DL algorithms with radiologists' assessments enhanced diagnostic performance.</p><p><strong>Conclusion: </strong>While still at an early research stage, DL can improve CEM diagnostic precision. However, there is a relatively small number of studies evaluating different DL algorithms, and most studies are retrospective. Further prospective testing to assess performance of applications at actual clinical setting is warranted.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is to systematically review the literature on deep learning (DL) applications for CEM, exploring how these models can further enhance CEM diagnostic potential.
Methods: This systematic review was reported according to the PRISMA guidelines. We searched for studies published up to April 2024. MEDLINE, Scopus and Google Scholar were used as search databases. Two reviewers independently implemented the search strategy. We included all types of original studies published in English that evaluated DL algorithms for automatic analysis of contrast-enhanced mammography CEM images. The quality of the studies was independently evaluated by two reviewers based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria.
Results: Sixteen relevant studies published between 2018 and 2024 were identified. All but one used convolutional neural network models (CNN) models. All studies evaluated DL algorithms for lesion classification, while six studies also assessed lesion detection or segmentation. Segmentation was performed manually in three studies, both manually and automatically in two studies and automatically in ten studies. For lesion classification on retrospective datasets, CNN models reported varied areas under the curve (AUCs) ranging from 0.53 to 0.99. Models incorporating attention mechanism achieved accuracies of 88.1% and 89.1%. Prospective studies reported AUC values of 0.89 and 0.91. Some studies demonstrated that combining DL models with radiomics featured improved classification. Integrating DL algorithms with radiologists' assessments enhanced diagnostic performance.
Conclusion: While still at an early research stage, DL can improve CEM diagnostic precision. However, there is a relatively small number of studies evaluating different DL algorithms, and most studies are retrospective. Further prospective testing to assess performance of applications at actual clinical setting is warranted.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.