Boah Kim, Tejas Sudharshan Mathai, Kimberly Helm, Pritam Mukherjee, Jianfei Liu, Ronald M Summers
{"title":"Automated Classification of Body MRI Sequences Using Convolutional Neural Networks.","authors":"Boah Kim, Tejas Sudharshan Mathai, Kimberly Helm, Pritam Mukherjee, Jianfei Liu, Ronald M Summers","doi":"10.1016/j.acra.2024.11.046","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Multi-parametric MRI (mpMRI) studies of the body are routinely acquired in clinical practice. However, a standardized naming convention for MRI protocols and series does not exist currently. Conflicts in the series descriptions present in the DICOM headers arise due to myriad MRI scanners from various manufacturers used for imaging, wide variations in imaging practices across institutions, and technologist preferences. These conflicts affect the hanging protocol, which dictates the arrangement of sequences for the reading radiologist. At present, clinician supervision is necessary to ensure that the correct sequence is being read and used for diagnosis. This pilot work seeks to classify five different series in mpMRI studies acquired at the levels of the chest, abdomen, and pelvis.</p><p><strong>Materials and methods: </strong>First, 2D and 3D classification networks were compared using data acquired by Siemens scanners and the optimal network was identified. Then, its performance was analyzed when trained with different training data quantities. The out-of-distribution (OOD) robustness on data acquired by a Philips scanner was also measured. In addition, the effect of data augmentation on model training was studied. The model was also tested with smaller input volumes through downsampling or cropping. Finally, the model was trained on combined data from both Siemens and Philips scanners to bridge the performance gap between different scanners.</p><p><strong>Results: </strong>Among 2D and 3D networks of ResNet-50, ResNet-101, DenseNet- 121, and EfficientNet-BN0, the 3D DenseNet-121 ensemble achieved an F<sub>1</sub> score of 99.5% when tested on data from the Siemens scanners. The model performed well on OOD data from the Philips scanner and achieved an F<sub>1</sub> score of 86.5%. There was no statistically significant difference between the models trained with and without data augmentation, and between the models trained with original-sized input and with smaller-sized input. When training the model with combined data, the F<sub>1</sub> score improved to 98.8% for the Philips test set and 99.3% for the Siemens test set respectively.</p><p><strong>Conclusion: </strong>Our pilot work is useful for the classification of MRI sequences in studies acquired at the level of the chest, abdomen, and pelvis. It has the potential for robust automation of hanging protocols and the creation of large-scale data cohorts for pre-clinical research.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: Multi-parametric MRI (mpMRI) studies of the body are routinely acquired in clinical practice. However, a standardized naming convention for MRI protocols and series does not exist currently. Conflicts in the series descriptions present in the DICOM headers arise due to myriad MRI scanners from various manufacturers used for imaging, wide variations in imaging practices across institutions, and technologist preferences. These conflicts affect the hanging protocol, which dictates the arrangement of sequences for the reading radiologist. At present, clinician supervision is necessary to ensure that the correct sequence is being read and used for diagnosis. This pilot work seeks to classify five different series in mpMRI studies acquired at the levels of the chest, abdomen, and pelvis.
Materials and methods: First, 2D and 3D classification networks were compared using data acquired by Siemens scanners and the optimal network was identified. Then, its performance was analyzed when trained with different training data quantities. The out-of-distribution (OOD) robustness on data acquired by a Philips scanner was also measured. In addition, the effect of data augmentation on model training was studied. The model was also tested with smaller input volumes through downsampling or cropping. Finally, the model was trained on combined data from both Siemens and Philips scanners to bridge the performance gap between different scanners.
Results: Among 2D and 3D networks of ResNet-50, ResNet-101, DenseNet- 121, and EfficientNet-BN0, the 3D DenseNet-121 ensemble achieved an F1 score of 99.5% when tested on data from the Siemens scanners. The model performed well on OOD data from the Philips scanner and achieved an F1 score of 86.5%. There was no statistically significant difference between the models trained with and without data augmentation, and between the models trained with original-sized input and with smaller-sized input. When training the model with combined data, the F1 score improved to 98.8% for the Philips test set and 99.3% for the Siemens test set respectively.
Conclusion: Our pilot work is useful for the classification of MRI sequences in studies acquired at the level of the chest, abdomen, and pelvis. It has the potential for robust automation of hanging protocols and the creation of large-scale data cohorts for pre-clinical research.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.