Roghayeh Farrokhzad, Bagher Seyedalipour, Payam Baziyar, Saman Hosseinkhani
{"title":"Insight Into Factors Influencing the Aggregation Process in Wild-Type and P66R Mutant SOD1: Computational and Spectroscopic Approaches.","authors":"Roghayeh Farrokhzad, Bagher Seyedalipour, Payam Baziyar, Saman Hosseinkhani","doi":"10.1002/prot.26765","DOIUrl":null,"url":null,"abstract":"<p><p>Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level. Modifications in apo-SOD1 compared to holo-SOD1 were more pronounced in flexibility, stability, hydrophobicity, and intramolecular interactions, as indicated by molecular dynamics simulations. The enzymatic activities of holo/apo-WT SOD1 were 1.30 and 1.88-fold of the holo/apo P66R mutant, respectively. Under amyloid-inducing conditions, decreased ANS fluorescence intensity in the apo-form relative to the holo-form suggested pre-fibrillar species and amyloid aggregate growth due to occluded hydrophobic pockets. FTIR spectroscopy revealed that apo-WT-SOD1 and apo-P66R exhibited a mixture of parallel and intermolecular β-sheet structures, indicative of aggregation propensity. Aggregate species were identified using TEM, Congo red staining, and ThT/ANS fluorescence spectroscopy. Thermodynamic analyses with GdnHCl demonstrated that metal deficit, mutation, and intramolecular disulfide bond reduction are essential for initiating SOD1 misfolding and aggregation. These disruptions destabilize the dimer-monomer equilibrium, promoting dimer dissociation into monomers and decreasing the thermodynamic stability of SOD1 variants, thus facilitating amyloid/amorphous aggregate formation. Our findings offer novel insights into protein aggregation mechanisms in disease pathology and highlight potential therapeutic strategies against toxic protein aggregation, including SOD1.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"885-907"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26765","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level. Modifications in apo-SOD1 compared to holo-SOD1 were more pronounced in flexibility, stability, hydrophobicity, and intramolecular interactions, as indicated by molecular dynamics simulations. The enzymatic activities of holo/apo-WT SOD1 were 1.30 and 1.88-fold of the holo/apo P66R mutant, respectively. Under amyloid-inducing conditions, decreased ANS fluorescence intensity in the apo-form relative to the holo-form suggested pre-fibrillar species and amyloid aggregate growth due to occluded hydrophobic pockets. FTIR spectroscopy revealed that apo-WT-SOD1 and apo-P66R exhibited a mixture of parallel and intermolecular β-sheet structures, indicative of aggregation propensity. Aggregate species were identified using TEM, Congo red staining, and ThT/ANS fluorescence spectroscopy. Thermodynamic analyses with GdnHCl demonstrated that metal deficit, mutation, and intramolecular disulfide bond reduction are essential for initiating SOD1 misfolding and aggregation. These disruptions destabilize the dimer-monomer equilibrium, promoting dimer dissociation into monomers and decreasing the thermodynamic stability of SOD1 variants, thus facilitating amyloid/amorphous aggregate formation. Our findings offer novel insights into protein aggregation mechanisms in disease pathology and highlight potential therapeutic strategies against toxic protein aggregation, including SOD1.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.