Zezhong Zhang, Ivan Lobato, Hamish Brown, Dirk Lamoen, Daen Jannis, Johan Verbeeck, Sandra Van Aert, Peter D Nellist
{"title":"Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions.","authors":"Zezhong Zhang, Ivan Lobato, Hamish Brown, Dirk Lamoen, Daen Jannis, Johan Verbeeck, Sandra Van Aert, Peter D Nellist","doi":"10.1016/j.ultramic.2024.114083","DOIUrl":null,"url":null,"abstract":"<p><p>The rich information of electron energy-loss spectroscopy (EELS) comes from the complex inelastic scattering process whereby fast electrons transfer energy and momentum to atoms, exciting bound electrons from their ground states to higher unoccupied states. To quantify EELS, the common practice is to compare the cross-sections integrated within an energy window or fit the observed spectrum with theoretical differential cross-sections calculated from a generalized oscillator strength (GOS) database with experimental parameters. The previous Hartree-Fock-based and DFT-based GOS are calculated from Schrödinger's solution of atomic orbitals, which does not include the full relativistic effects. Here, we attempt to go beyond the limitations of the Schrödinger solution in the GOS tabulation by including the full relativistic effects using the Dirac equation within the local density approximation, which is particularly important for core-shell electrons of heavy elements with strong spin-orbit coupling. This has been done for all elements in the periodic table (up to Z = 118) for all possible excitation edges using modern computing capabilities and parallelization algorithms. The relativistic effects of fast incoming electrons were included to calculate cross-sections that are specific to the acceleration voltage. We make these tabulated GOS available under an open-source license to the benefit of both academic users and to allow integration into commercial solutions.</p>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"269 ","pages":"114083"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ultramic.2024.114083","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The rich information of electron energy-loss spectroscopy (EELS) comes from the complex inelastic scattering process whereby fast electrons transfer energy and momentum to atoms, exciting bound electrons from their ground states to higher unoccupied states. To quantify EELS, the common practice is to compare the cross-sections integrated within an energy window or fit the observed spectrum with theoretical differential cross-sections calculated from a generalized oscillator strength (GOS) database with experimental parameters. The previous Hartree-Fock-based and DFT-based GOS are calculated from Schrödinger's solution of atomic orbitals, which does not include the full relativistic effects. Here, we attempt to go beyond the limitations of the Schrödinger solution in the GOS tabulation by including the full relativistic effects using the Dirac equation within the local density approximation, which is particularly important for core-shell electrons of heavy elements with strong spin-orbit coupling. This has been done for all elements in the periodic table (up to Z = 118) for all possible excitation edges using modern computing capabilities and parallelization algorithms. The relativistic effects of fast incoming electrons were included to calculate cross-sections that are specific to the acceleration voltage. We make these tabulated GOS available under an open-source license to the benefit of both academic users and to allow integration into commercial solutions.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.