Xingru Huang , Changpeng Yue , Yihao Guo , Jian Huang , Zhengyao Jiang , Mingkuan Wang , Zhaoyang Xu , Guangyuan Zhang , Jin Liu , Tianyun Zhang , Zhiwen Zheng , Xiaoshuai Zhang , Hong He , Shaowei Jiang , Yaoqi Sun
{"title":"Multidimensional Directionality-Enhanced Segmentation via large vision model","authors":"Xingru Huang , Changpeng Yue , Yihao Guo , Jian Huang , Zhengyao Jiang , Mingkuan Wang , Zhaoyang Xu , Guangyuan Zhang , Jin Liu , Tianyun Zhang , Zhiwen Zheng , Xiaoshuai Zhang , Hong He , Shaowei Jiang , Yaoqi Sun","doi":"10.1016/j.media.2024.103395","DOIUrl":null,"url":null,"abstract":"<div><div>Optical Coherence Tomography (OCT) facilitates a comprehensive examination of macular edema and associated lesions. Manual delineation of retinal fluid is labor-intensive and error-prone, necessitating an automated diagnostic and therapeutic planning mechanism. Conventional supervised learning models are hindered by dataset limitations, while Transformer-based large vision models exhibit challenges in medical image segmentation, particularly in detecting small, subtle lesions in OCT images. This paper introduces the Multidimensional Directionality-Enhanced Retinal Fluid Segmentation framework (MD-DERFS), which reduces the limitations inherent in conventional supervised models by adapting a transformer-based large vision model for macular edema segmentation. The proposed MD-DERFS introduces a Multi-Dimensional Feature Re-Encoder Unit (MFU) to augment the model’s proficiency in recognizing specific textures and pathological features through directional prior extraction and an Edema Texture Mapping Unit (ETMU), a Cross-scale Directional Insight Network (CDIN) furnishes a holistic perspective spanning local to global details, mitigating the large vision model’s deficiencies in capturing localized feature information. Additionally, the framework is augmented by a Harmonic Minutiae Segmentation Equilibrium loss (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mtext>HMSE</mtext></mrow></msub></math></span>) that can address the challenges of data imbalance and annotation scarcity in macular edema datasets. Empirical validation on the MacuScan-8k dataset shows that MD-DERFS surpasses existing segmentation methodologies, demonstrating its efficacy in adapting large vision models for boundary-sensitive medical imaging tasks. The code is publicly available at <span><span>https://github.com/IMOP-lab/MD-DERFS-Pytorch.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103395"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524003207","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Optical Coherence Tomography (OCT) facilitates a comprehensive examination of macular edema and associated lesions. Manual delineation of retinal fluid is labor-intensive and error-prone, necessitating an automated diagnostic and therapeutic planning mechanism. Conventional supervised learning models are hindered by dataset limitations, while Transformer-based large vision models exhibit challenges in medical image segmentation, particularly in detecting small, subtle lesions in OCT images. This paper introduces the Multidimensional Directionality-Enhanced Retinal Fluid Segmentation framework (MD-DERFS), which reduces the limitations inherent in conventional supervised models by adapting a transformer-based large vision model for macular edema segmentation. The proposed MD-DERFS introduces a Multi-Dimensional Feature Re-Encoder Unit (MFU) to augment the model’s proficiency in recognizing specific textures and pathological features through directional prior extraction and an Edema Texture Mapping Unit (ETMU), a Cross-scale Directional Insight Network (CDIN) furnishes a holistic perspective spanning local to global details, mitigating the large vision model’s deficiencies in capturing localized feature information. Additionally, the framework is augmented by a Harmonic Minutiae Segmentation Equilibrium loss () that can address the challenges of data imbalance and annotation scarcity in macular edema datasets. Empirical validation on the MacuScan-8k dataset shows that MD-DERFS surpasses existing segmentation methodologies, demonstrating its efficacy in adapting large vision models for boundary-sensitive medical imaging tasks. The code is publicly available at https://github.com/IMOP-lab/MD-DERFS-Pytorch.git.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.