Linzhen Li, Zhen Ye, Huanzhu Qian, Liulin Chen, Yu Hu, Xiaolan Liu, Jinyu Zhu, Taozhi Bao, Kumar Ganesan, Fating Lu, Juan Wang, Xudong Wen, Kaihua Qin, Qiaobo Ye
{"title":"Modified Tou Nong Powder obstructs ulcerative colitis by regulating autophagy and mitochondrial function.","authors":"Linzhen Li, Zhen Ye, Huanzhu Qian, Liulin Chen, Yu Hu, Xiaolan Liu, Jinyu Zhu, Taozhi Bao, Kumar Ganesan, Fating Lu, Juan Wang, Xudong Wen, Kaihua Qin, Qiaobo Ye","doi":"10.1016/j.jep.2024.119220","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Modified Tou Nong Powder (MTNP) is a traditional Chinese medicine formula widely used for treating body surface ulcers. Since colonic ulcers share similar pathological characteristics, MTNP has shown promising results in alleviating ulcerative colitis (UC) and has been safely used in clinical practice.</p><p><strong>Aim of the study: </strong>This study aims to investigate how MTNP alleviates experimental colitis by inducing autophagy through the regulation of the AMP-activated protein kinase (AMPK)/Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) signaling pathway.</p><p><strong>Materials and methods: </strong>In this study, UC rat models were created using 2,4,6-Trinitrobenzenesulfonic acid (TNBS). The therapeutic effects of MTNP on TNBS-induced colitis were evaluated through various methods such as disease activity index, visual examination, and histological examination of the colon. An inflammation model was also established in Caco-2 cells using H<sub>2</sub>O<sub>2</sub>. Western blot analysis was used to assess the expression of autophagy-related proteins, while immunofluorescence detection was employed for protein localization. Furthermore, quantitative real-time polymerase chain reaction (qPCR) was performed to analyze the expression of autophagy-related genes, confirming the role of MTNP in modulating the AMPK/PGC-1α signaling pathway.</p><p><strong>Results: </strong>In vivo, oral administration of MTNP led to a remarkable reduction in colonic injury, inhibition of inflammatory infiltration, and improvement in the abnormal expression of inflammatory factors in colonic tissues. Furthermore, MTNP stimulated autophagy by activating the AMPK/PGC-1α signaling pathway, thereby mitigating mitochondrial dysfunction. In vitro, exposure to MTNP drug-containing serum (MTNP-DS) resulted in a reduction of reactive oxygen species levels, improvement in mitochondrial membrane potential, and activation of the AMPK/PGC-1α pathway, leading to the promotion of mitochondrial autophagy.</p><p><strong>Conclusion: </strong>The results indicate that MTNP triggers autophagy and enhances mitochondrial function, leading to the alleviation of UC in both in vitro and in vivo. These benefits are strongly linked to the activation of the AMPK/PGC-1α signaling pathway.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":" ","pages":"119220"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2024.119220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance: Modified Tou Nong Powder (MTNP) is a traditional Chinese medicine formula widely used for treating body surface ulcers. Since colonic ulcers share similar pathological characteristics, MTNP has shown promising results in alleviating ulcerative colitis (UC) and has been safely used in clinical practice.
Aim of the study: This study aims to investigate how MTNP alleviates experimental colitis by inducing autophagy through the regulation of the AMP-activated protein kinase (AMPK)/Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) signaling pathway.
Materials and methods: In this study, UC rat models were created using 2,4,6-Trinitrobenzenesulfonic acid (TNBS). The therapeutic effects of MTNP on TNBS-induced colitis were evaluated through various methods such as disease activity index, visual examination, and histological examination of the colon. An inflammation model was also established in Caco-2 cells using H2O2. Western blot analysis was used to assess the expression of autophagy-related proteins, while immunofluorescence detection was employed for protein localization. Furthermore, quantitative real-time polymerase chain reaction (qPCR) was performed to analyze the expression of autophagy-related genes, confirming the role of MTNP in modulating the AMPK/PGC-1α signaling pathway.
Results: In vivo, oral administration of MTNP led to a remarkable reduction in colonic injury, inhibition of inflammatory infiltration, and improvement in the abnormal expression of inflammatory factors in colonic tissues. Furthermore, MTNP stimulated autophagy by activating the AMPK/PGC-1α signaling pathway, thereby mitigating mitochondrial dysfunction. In vitro, exposure to MTNP drug-containing serum (MTNP-DS) resulted in a reduction of reactive oxygen species levels, improvement in mitochondrial membrane potential, and activation of the AMPK/PGC-1α pathway, leading to the promotion of mitochondrial autophagy.
Conclusion: The results indicate that MTNP triggers autophagy and enhances mitochondrial function, leading to the alleviation of UC in both in vitro and in vivo. These benefits are strongly linked to the activation of the AMPK/PGC-1α signaling pathway.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.