Jonas L Isaksen, Bolette Arildsen, Cathrine Lind, Malene Nørregaard, Kevin Vernooy, Ulrich Schotten, Thomas Jespersen, Konstanze Betz, Astrid N L Hermans, Jørgen K Kanters, Dominik Linz
{"title":"Raw photoplethysmogram waveforms versus peak-to-peak intervals for machine learning detection of atrial fibrillation: Does waveform matter?","authors":"Jonas L Isaksen, Bolette Arildsen, Cathrine Lind, Malene Nørregaard, Kevin Vernooy, Ulrich Schotten, Thomas Jespersen, Konstanze Betz, Astrid N L Hermans, Jørgen K Kanters, Dominik Linz","doi":"10.1016/j.cmpb.2024.108537","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning-based analysis can accurately detect atrial fibrillation (AF) from photoplethysmograms (PPGs), however the computational requirements for analyzing raw PPG waveforms can be significant. The analysis of PPG-derived peak-to-peak intervals may offer a more feasible solution for smartphone deployment, provided the diagnostic utility is comparable.</p><p><strong>Aims: </strong>To compare raw PPG waveforms and PPG-derived peak-to-peak intervals as input signals for machine learning detection of AF.</p><p><strong>Methods: </strong>We developed specialized neural networks for raw waveform and peak-to-peak interval analyses and trained them on 7,704 PPGs from 106 patients from the TeleCheck-AF project. We evaluated the neural networks on 48,912 PPGs from 416 patients from the VIRTUAL-SAFARI project. We recorded computational requirements, sensitivity, positive predictive value (PPV), and F1 score.</p><p><strong>Results: </strong>With 1.6 million trainable parameters, the waveform model was more than 100 times as complex as the interval model (15,513 parameters) and required 19 times more computational power. In external validation, metrics were comparable between the interval and waveform models. For the interval model vs. the waveform model, sensitivity was 91.7 % vs. 81.9 % (p=0.4), PPV was 80.5 % vs. 84.5 % (p=0.3), and F1 score was 85.6 % vs. 81.3 % (p=0.5), respectively.</p><p><strong>Conclusion: </strong>PPG-derived peak-to-peak intervals and PPG waveforms were equivalent as input signals to neural networks in terms of accurate AF detection. The reduced computational requirements of the interval model make it a more suitable option for deployment on digital end-user devices such as smartphones.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108537"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108537","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Machine learning-based analysis can accurately detect atrial fibrillation (AF) from photoplethysmograms (PPGs), however the computational requirements for analyzing raw PPG waveforms can be significant. The analysis of PPG-derived peak-to-peak intervals may offer a more feasible solution for smartphone deployment, provided the diagnostic utility is comparable.
Aims: To compare raw PPG waveforms and PPG-derived peak-to-peak intervals as input signals for machine learning detection of AF.
Methods: We developed specialized neural networks for raw waveform and peak-to-peak interval analyses and trained them on 7,704 PPGs from 106 patients from the TeleCheck-AF project. We evaluated the neural networks on 48,912 PPGs from 416 patients from the VIRTUAL-SAFARI project. We recorded computational requirements, sensitivity, positive predictive value (PPV), and F1 score.
Results: With 1.6 million trainable parameters, the waveform model was more than 100 times as complex as the interval model (15,513 parameters) and required 19 times more computational power. In external validation, metrics were comparable between the interval and waveform models. For the interval model vs. the waveform model, sensitivity was 91.7 % vs. 81.9 % (p=0.4), PPV was 80.5 % vs. 84.5 % (p=0.3), and F1 score was 85.6 % vs. 81.3 % (p=0.5), respectively.
Conclusion: PPG-derived peak-to-peak intervals and PPG waveforms were equivalent as input signals to neural networks in terms of accurate AF detection. The reduced computational requirements of the interval model make it a more suitable option for deployment on digital end-user devices such as smartphones.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.