Distribution characteristics, sources and risk assessment of heavy metal(oid)s in road dust from a typical lead-zinc mining area in South China.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Peng Xu, Liang Gao, Qing Zhao
{"title":"Distribution characteristics, sources and risk assessment of heavy metal(oid)s in road dust from a typical lead-zinc mining area in South China.","authors":"Peng Xu, Liang Gao, Qing Zhao","doi":"10.1007/s10653-024-02321-8","DOIUrl":null,"url":null,"abstract":"<p><p>Although the construction of green mines has effectively reduced soil pollution issues, dust contaminants continue to pose potential risks to human health and environment. This study investigated the concentrations, sources, and human health risks of metal(oid)s present in road dust across different functional zones of the largest lead-zinc mine in Guangdong Province, China, namely the Fankou lead-zinc mine. First, a systematic collection of 45 dust samples from six functional zones was conducted, focusing on the concentrations of ten heavy metal(oid)s (HMs), including As, Cd, Pb, and Zn etc. The results indicate that mining and smelting activities at the Fankou lead-zinc mine dictate the accumulation and distribution of HMs in the dust across the various functional zones. Except for Mn, Cr, and Thallium (Tl), the concentrations of other HMs significantly exceed the soil background values. These HMs primarily originate from mixed sources, including natural, traffic, and industrial activities. In particular, the presence of As, Cd, Pb, and Zn in the dust resulted in moderate to severe pollution, posing extremely high potential ecological risks. Furthermore, the bioavailable concentrations of HMs in the dust were analyzed using two in vitro gastrointestinal simulation methods: Physiologically Based Extraction Test (PBET) and Simplified Bioaccessibility Extraction Test (SBET), allowing for a further assessment of metal bioavailability and estimation of (non)carcinogenic risk probabilities for humans. The bioaccessible heavy metal contents extracted through SBET and PBET were relatively low, with most samples exhibiting bioaccessibility below 40%. In comparison to the total concentrations of HMs in the dust, the estimated non-carcinogenic risks (HQ and HI) and carcinogenic risks (CR) associated with bioavailability (PBET and SBET) for As, Cd, Cu, Sb, Pb, and Zn were significantly reduced, falling within safe values for both adults and children. However, the carcinogenic risk posed by total As remains a concern for local adults and children, indicating that the potential carcinogenic risk of As should not be overlooked. Therefore, additional protective measures should be considered to reduce resident exposure to dust, particularly in the core production areas of the mining district.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"9"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02321-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although the construction of green mines has effectively reduced soil pollution issues, dust contaminants continue to pose potential risks to human health and environment. This study investigated the concentrations, sources, and human health risks of metal(oid)s present in road dust across different functional zones of the largest lead-zinc mine in Guangdong Province, China, namely the Fankou lead-zinc mine. First, a systematic collection of 45 dust samples from six functional zones was conducted, focusing on the concentrations of ten heavy metal(oid)s (HMs), including As, Cd, Pb, and Zn etc. The results indicate that mining and smelting activities at the Fankou lead-zinc mine dictate the accumulation and distribution of HMs in the dust across the various functional zones. Except for Mn, Cr, and Thallium (Tl), the concentrations of other HMs significantly exceed the soil background values. These HMs primarily originate from mixed sources, including natural, traffic, and industrial activities. In particular, the presence of As, Cd, Pb, and Zn in the dust resulted in moderate to severe pollution, posing extremely high potential ecological risks. Furthermore, the bioavailable concentrations of HMs in the dust were analyzed using two in vitro gastrointestinal simulation methods: Physiologically Based Extraction Test (PBET) and Simplified Bioaccessibility Extraction Test (SBET), allowing for a further assessment of metal bioavailability and estimation of (non)carcinogenic risk probabilities for humans. The bioaccessible heavy metal contents extracted through SBET and PBET were relatively low, with most samples exhibiting bioaccessibility below 40%. In comparison to the total concentrations of HMs in the dust, the estimated non-carcinogenic risks (HQ and HI) and carcinogenic risks (CR) associated with bioavailability (PBET and SBET) for As, Cd, Cu, Sb, Pb, and Zn were significantly reduced, falling within safe values for both adults and children. However, the carcinogenic risk posed by total As remains a concern for local adults and children, indicating that the potential carcinogenic risk of As should not be overlooked. Therefore, additional protective measures should be considered to reduce resident exposure to dust, particularly in the core production areas of the mining district.

华南典型铅锌矿区道路粉尘重金属(类)分布特征、来源及风险评价
虽然绿色矿山的建设有效地减少了土壤污染问题,但粉尘污染物继续对人类健康和环境构成潜在风险。本研究调查了广东省最大的铅锌矿凡口铅锌矿不同功能区道路粉尘中金属(类)物质的浓度、来源及人体健康风险。首先,系统采集了6个功能区45份粉尘样品,重点分析了As、Cd、Pb、Zn等10种重金属(类)物质的浓度。结果表明,凡口铅锌矿的采矿和冶炼活动决定了各功能区粉尘中HMs的积累和分布。除Mn、Cr和铊(Tl)外,其他hm浓度均显著高于土壤背景值。这些HMs主要来自混合来源,包括自然、交通和工业活动。特别是粉尘中As、Cd、Pb、Zn的存在,造成中至重度污染,具有极高的潜在生态风险。此外,使用两种体外胃肠模拟方法:基于生理的提取试验(PBET)和简化生物可及性提取试验(SBET)分析粉尘中HMs的生物利用浓度,从而进一步评估金属的生物利用度并估计人类的(非)致癌风险概率。通过SBET和PBET提取的重金属生物可达性相对较低,大部分样品的生物可达性低于40%。与粉尘中HMs的总浓度相比,As、Cd、Cu、Sb、Pb和Zn的估计非致癌风险(HQ和HI)和与生物利用度(PBET和SBET)相关的致癌风险(CR)显著降低,落在成人和儿童的安全值之内。然而,总砷的致癌风险仍然是当地成人和儿童关注的问题,表明砷的潜在致癌风险不容忽视。因此,应考虑采取额外的保护措施,以减少居民接触粉尘,特别是在矿区的核心生产区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信