Modes of Binding of Small Molecules Dictate the Interruption of RBD-ACE2 Complex of SARS-CoV-2.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Sithanantham Muneeswaran, Karuppiah Muruga Poopathi Raja
{"title":"Modes of Binding of Small Molecules Dictate the Interruption of RBD-ACE2 Complex of SARS-CoV-2.","authors":"Sithanantham Muneeswaran, Karuppiah Muruga Poopathi Raja","doi":"10.1002/cphc.202400751","DOIUrl":null,"url":null,"abstract":"<p><p>The spike protein is a vital target for therapeutic advancement to inhibit viral entrance. Given that the connection between Spike and ACE2 constitutes the initial phase of SARS-CoV-2 pathogenesis, obstructing this interaction presents a promising therapeutic approach. This work aims to find compounds from DrugBank that can modulate the stability of the spike RBD-ACE2 protein-protein complex. Employing a therapeutic repurposing strategy, we conducted molecular docking of over 9000 DrugBank compounds against the Spike RBD-ACE2 complex, on ten variants, including the wild-type. We also evaluated the intricate stability of the RBD-ACE2 proteins by molecular dynamics simulations, hydrogen bond analysis, RMSD analysis, radius of gyration analysis, and the QM-MM approach. We assessed the efficacy of the top ten candidates for each variant as an inhibitor. Our findings demonstrated for the first time that DrugBank small molecules can interact in three distinct modalities inside the extensive protein-protein interface of RBD and ACE2 complexes. The top ten analyses identified specific DrugBank candidates for each variant and molecules capable of binding to multiple variants. This comprehensive computational technique enables the screening and forecasting of hits for any big and shallow protein-protein interface drug targets.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400751"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400751","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The spike protein is a vital target for therapeutic advancement to inhibit viral entrance. Given that the connection between Spike and ACE2 constitutes the initial phase of SARS-CoV-2 pathogenesis, obstructing this interaction presents a promising therapeutic approach. This work aims to find compounds from DrugBank that can modulate the stability of the spike RBD-ACE2 protein-protein complex. Employing a therapeutic repurposing strategy, we conducted molecular docking of over 9000 DrugBank compounds against the Spike RBD-ACE2 complex, on ten variants, including the wild-type. We also evaluated the intricate stability of the RBD-ACE2 proteins by molecular dynamics simulations, hydrogen bond analysis, RMSD analysis, radius of gyration analysis, and the QM-MM approach. We assessed the efficacy of the top ten candidates for each variant as an inhibitor. Our findings demonstrated for the first time that DrugBank small molecules can interact in three distinct modalities inside the extensive protein-protein interface of RBD and ACE2 complexes. The top ten analyses identified specific DrugBank candidates for each variant and molecules capable of binding to multiple variants. This comprehensive computational technique enables the screening and forecasting of hits for any big and shallow protein-protein interface drug targets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信