Conjugated fatty acids drive ferroptosis through chaperone-mediated autophagic degradation of GPX4 by targeting mitochondria.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Yusuke Hirata, Yuto Yamada, Soma Taguchi, Ryota Kojima, Haruka Masumoto, Shinnosuke Kimura, Takuya Niijima, Takashi Toyama, Ryoji Kise, Emiko Sato, Yasunori Uchida, Junya Ito, Kiyotaka Nakagawa, Tomohiko Taguchi, Asuka Inoue, Yoshiro Saito, Takuya Noguchi, Atsushi Matsuzawa
{"title":"Conjugated fatty acids drive ferroptosis through chaperone-mediated autophagic degradation of GPX4 by targeting mitochondria.","authors":"Yusuke Hirata, Yuto Yamada, Soma Taguchi, Ryota Kojima, Haruka Masumoto, Shinnosuke Kimura, Takuya Niijima, Takashi Toyama, Ryoji Kise, Emiko Sato, Yasunori Uchida, Junya Ito, Kiyotaka Nakagawa, Tomohiko Taguchi, Asuka Inoue, Yoshiro Saito, Takuya Noguchi, Atsushi Matsuzawa","doi":"10.1038/s41419-024-07237-w","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugated fatty acids (CFAs) have been known for their anti-tumor activity. However, the mechanism of action remains unclear. Here, we identify CFAs as inducers of glutathione peroxidase 4 (GPX4) degradation through chaperone-mediated autophagy (CMA). CFAs, such as (10E,12Z)-octadecadienoic acid and α-eleostearic acid (ESA), induced GPX4 degradation, generation of mitochondrial reactive oxygen species (ROS) and lipid peroxides, and ultimately ferroptosis in cancer cell lines, including HT1080 and A549 cells, which were suppressed by either pharmacological blockade of CMA or genetic deletion of LAMP2A, a crucial molecule for CMA. Mitochondrial ROS were sufficient and necessary for CMA-dependent GPX4 degradation. Oral administration of an ESA-rich oil attenuated xenograft tumor growth of wild-type, but not that of LAMP2A-deficient HT1080 cells, accompanied by increased lipid peroxidation, GPX4 degradation and cell death. Our study establishes mitochondria as the key target of CFAs to trigger lipid peroxidation and GPX4 degradation, providing insight into ferroptosis-based cancer therapy.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"884"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07237-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated fatty acids (CFAs) have been known for their anti-tumor activity. However, the mechanism of action remains unclear. Here, we identify CFAs as inducers of glutathione peroxidase 4 (GPX4) degradation through chaperone-mediated autophagy (CMA). CFAs, such as (10E,12Z)-octadecadienoic acid and α-eleostearic acid (ESA), induced GPX4 degradation, generation of mitochondrial reactive oxygen species (ROS) and lipid peroxides, and ultimately ferroptosis in cancer cell lines, including HT1080 and A549 cells, which were suppressed by either pharmacological blockade of CMA or genetic deletion of LAMP2A, a crucial molecule for CMA. Mitochondrial ROS were sufficient and necessary for CMA-dependent GPX4 degradation. Oral administration of an ESA-rich oil attenuated xenograft tumor growth of wild-type, but not that of LAMP2A-deficient HT1080 cells, accompanied by increased lipid peroxidation, GPX4 degradation and cell death. Our study establishes mitochondria as the key target of CFAs to trigger lipid peroxidation and GPX4 degradation, providing insight into ferroptosis-based cancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信