All You Need to Know About Allometric Scaling: An Integrative Review on the Theoretical Basis, Empirical Evidence, and Application in Human Pharmacology.

IF 4.6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Daan W van Valkengoed, Elke H J Krekels, Catherijne A J Knibbe
{"title":"All You Need to Know About Allometric Scaling: An Integrative Review on the Theoretical Basis, Empirical Evidence, and Application in Human Pharmacology.","authors":"Daan W van Valkengoed, Elke H J Krekels, Catherijne A J Knibbe","doi":"10.1007/s40262-024-01444-6","DOIUrl":null,"url":null,"abstract":"<p><p>Scaling approaches are used to describe or predict clearance for paediatric or obese populations from normal-weight adult values. Theoretical allometry assumes the existence of a universal bodyweight-based scaling relationship. Although theoretical allometry is highly disputed, it is commonly applied in pharmacological data analyses and clinical practice. The aim of the current review is to (1) increase pharmacologists' understanding of theoretical allometry to better understand the (implicit) assumptions and (dis)advantages and (2) highlight important methodological considerations with the application of this methodology. Theoretical allometry originated in an empirical, and later debated, observation by Kleiber of a scaling exponent of 0.75 between basal metabolic rate and body mass of mammals. The mathematical framework of West, Brown, and Enquist provides one possible explanation for this value. To date, multiple key assumptions of this framework have been disputed or disproven, and an increasing body of evidence is emerging against the existence of one universal allometric exponent. The promise of ease and universality of use that comes with theoretical approaches may be the reason they are so strongly sought after and defended. However, ecologists have suggested that the theory should move from a 'Newtonian approach', in which physical explanations are sought for a universal law and variability is of minor importance, to a 'Darwinian approach', in which variability is considered of primary importance for which evolutionary explanations can be found. No scientific support was found for the application of allometry for within-species scaling, so the application of basal metabolic rate-based scaling principles to clearance scaling remains unsubstantiated. Recent insights from physiologically based modelling approaches emphasise the interplay between drugs with different properties and physiological variables that underlie drug clearance, which drives the variability in the allometric scaling exponent in the field of pharmacology. To deal with this variability, drug-specific or patient-specific adaptations to theoretical allometric scaling are proposed, that introduce empiric elements and reduce the universality of the theory. The use of allometric scaling with an exponent of 0.75 may hold empirical merit for paediatric populations, except for the youngest individuals (aged ≤ 5 years). Nevertheless, biological interpretations and extrapolation potential attributed to models based on 0.75 allometric scaling are theoretically unfounded, and merits of the empirical application of this function should, as for all models, always be supported by appropriate model validation procedures. In this respect, it is not the value of the allometric exponent but the description and prediction of individual clearance values and drug concentrations that are of primary interest.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01444-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Scaling approaches are used to describe or predict clearance for paediatric or obese populations from normal-weight adult values. Theoretical allometry assumes the existence of a universal bodyweight-based scaling relationship. Although theoretical allometry is highly disputed, it is commonly applied in pharmacological data analyses and clinical practice. The aim of the current review is to (1) increase pharmacologists' understanding of theoretical allometry to better understand the (implicit) assumptions and (dis)advantages and (2) highlight important methodological considerations with the application of this methodology. Theoretical allometry originated in an empirical, and later debated, observation by Kleiber of a scaling exponent of 0.75 between basal metabolic rate and body mass of mammals. The mathematical framework of West, Brown, and Enquist provides one possible explanation for this value. To date, multiple key assumptions of this framework have been disputed or disproven, and an increasing body of evidence is emerging against the existence of one universal allometric exponent. The promise of ease and universality of use that comes with theoretical approaches may be the reason they are so strongly sought after and defended. However, ecologists have suggested that the theory should move from a 'Newtonian approach', in which physical explanations are sought for a universal law and variability is of minor importance, to a 'Darwinian approach', in which variability is considered of primary importance for which evolutionary explanations can be found. No scientific support was found for the application of allometry for within-species scaling, so the application of basal metabolic rate-based scaling principles to clearance scaling remains unsubstantiated. Recent insights from physiologically based modelling approaches emphasise the interplay between drugs with different properties and physiological variables that underlie drug clearance, which drives the variability in the allometric scaling exponent in the field of pharmacology. To deal with this variability, drug-specific or patient-specific adaptations to theoretical allometric scaling are proposed, that introduce empiric elements and reduce the universality of the theory. The use of allometric scaling with an exponent of 0.75 may hold empirical merit for paediatric populations, except for the youngest individuals (aged ≤ 5 years). Nevertheless, biological interpretations and extrapolation potential attributed to models based on 0.75 allometric scaling are theoretically unfounded, and merits of the empirical application of this function should, as for all models, always be supported by appropriate model validation procedures. In this respect, it is not the value of the allometric exponent but the description and prediction of individual clearance values and drug concentrations that are of primary interest.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
4.40%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics. Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信