Construction of nucleus-targeted photosensitizer and highly effective photodynamic immunotherapy for cancer.

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yacong Liao, Xiaoping Lin, Zhenhu He, Juan Chen, Siping Tang, Wei Wang, Wen Chen
{"title":"Construction of nucleus-targeted photosensitizer and highly effective photodynamic immunotherapy for cancer.","authors":"Yacong Liao, Xiaoping Lin, Zhenhu He, Juan Chen, Siping Tang, Wei Wang, Wen Chen","doi":"10.1016/j.bioorg.2024.108022","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleus is the largest and most important organelle within eukaryotic cells, containing most of the cell's genetic material, DNA. It serves as the central hub for genetic regulation and metabolism, making it an ideal target for subcellular drug delivery. The development of nucleus-targeted photosensitizers allows for the rapid and effective destruction of critical components such as DNA within the nucleus. This achieves the goal of efficiently eliminating cancer cells. However, most organic molecules, including photosensitizers, cannot penetrate the nuclear membrane, making the design and synthesis of nucleus-targeted photosensitizers both significant and challenging. The authors have designed and synthesized a nucleus-targeted activatable photosensitive probe (CMT-I). In vitro spectral analyses demonstrate that CMT-I is specifically activated by ct-DNA, significantly enhancing fluorescence-a 49-fold increase is observed upon binding. Furthermore, under 590 nm light irradiation, CMT-I effectively generates <sup>1</sup>O<sub>2</sub>. Molecular docking show that CMT-I selectively binds to DNA through hydrogen bonds and ᴨ-ᴨ conjugation. RNA sequencing experiments reveal that photodynamic therapy activates immunity within tumor cells, triggering an adaptive immune response. In vivo therapeutic experiments further verify the enhanced anti-tumor immunity of CMT-I, which is crucial for effectively eliminating immunologically cold tumors and highlights the potential of DNA-targeted photodynamic therapy in precise cancer treatment.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108022"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleus is the largest and most important organelle within eukaryotic cells, containing most of the cell's genetic material, DNA. It serves as the central hub for genetic regulation and metabolism, making it an ideal target for subcellular drug delivery. The development of nucleus-targeted photosensitizers allows for the rapid and effective destruction of critical components such as DNA within the nucleus. This achieves the goal of efficiently eliminating cancer cells. However, most organic molecules, including photosensitizers, cannot penetrate the nuclear membrane, making the design and synthesis of nucleus-targeted photosensitizers both significant and challenging. The authors have designed and synthesized a nucleus-targeted activatable photosensitive probe (CMT-I). In vitro spectral analyses demonstrate that CMT-I is specifically activated by ct-DNA, significantly enhancing fluorescence-a 49-fold increase is observed upon binding. Furthermore, under 590 nm light irradiation, CMT-I effectively generates 1O2. Molecular docking show that CMT-I selectively binds to DNA through hydrogen bonds and ᴨ-ᴨ conjugation. RNA sequencing experiments reveal that photodynamic therapy activates immunity within tumor cells, triggering an adaptive immune response. In vivo therapeutic experiments further verify the enhanced anti-tumor immunity of CMT-I, which is crucial for effectively eliminating immunologically cold tumors and highlights the potential of DNA-targeted photodynamic therapy in precise cancer treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信