Potential COX-2 inhibitors modulating NF-κB/MAPK signaling pathways: Design, synthesis and evaluation of anti-inflammatory activity of Pterostilbene-carboxylic acid derivatives with an oxime ether moiety.

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peng Luo, Taotao Chen, Shaoling Huang, Feng Peng, Yunhou Huang, Weigao Pan
{"title":"Potential COX-2 inhibitors modulating NF-κB/MAPK signaling pathways: Design, synthesis and evaluation of anti-inflammatory activity of Pterostilbene-carboxylic acid derivatives with an oxime ether moiety.","authors":"Peng Luo, Taotao Chen, Shaoling Huang, Feng Peng, Yunhou Huang, Weigao Pan","doi":"10.1016/j.bmc.2024.118022","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, a series of novel Pterostilbene-oxime ether-carboxylic acid (POC) derivatives (d1-d10, e1-e10 and 1-13) were designed, synthesized, and characterized by spectroscopic techniques. In order to further determine the absolute configuration of these compounds, one of them, compound d3, was investigated by X-ray single crystal diffraction method. d3 had a triclinic crystal with P-1 space group, and its CHCH and CHN was confirmed as E configuration. A strong hydrogen bond was formed between the hydrogen atom in CHCH moiety and the nitrogen atom in CHN moiety, which was a vital factor in the formation and stability of E configuration in the CHCH and CHN. The safety and anti-inflammatory activities of compounds (d1-d10, e1-e10 and 1-13) in vitro were evaluated. At 20 μM, compounds (d1-d10, e1-e10 and 1-13 were non-toxic and exhibited weak to strong inhibitory effects on the LPS-induced NO release. Among them, five compounds (1, 2, 7, 8 and 9) showed excellent anti-inflammatory effects with IC<sub>50</sub> (NO) values ranging from 9.87 to 19.78 μM, as well as strong COX-2 inhibitory abilities with IC<sub>50</sub> (COX-2) values ranging from 85.44 to 140.88 nM. Moreover, there was a rough positive correlation between their anti-inflammatory properties and the COX-2 inhibitory abilities. Compounds (1, 2, 7, 8 and 9) smoothly docked with COX-2 protein (PDB ID: 5KIR) to form stable complexes with strong hydrogen bonds, with an affinity range of -8.3 to -9.9 kcal/mol. SAR indicated that the amidation of POC at R<sub>2</sub> position was more favorable for enhancing the compound's biological actives than esterification. In addition, the 4-fluobenzyl substitution at R<sub>2</sub> position of the oxime ether moiety can obviously enhance the activity of above amide derivates. Introducing acyl groups (CO(CH<sub>2</sub>)<sub>n</sub>CH<sub>3</sub>, n = 2, 4 and 6) into NH(CH<sub>2</sub>)<sub>3</sub>OH group to form ester chain is disadvantageous for activity enhancing, moreover, the longer the carbon chain, the poorer the activity. The strongest COX-2 inhibitor (IC<sub>50</sub> (COX-2) = 85.44 ± 3.88 nM), compound 7, exerted as anti-inflammatory activities (IC<sub>50</sub> (NO) = 9.87 ± 1.38 μM) by down-regulating the expression of COX-2 and iNOS, and modulating NF-κB/MAPK signaling pathways.</p>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"118 ","pages":"118022"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bmc.2024.118022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a series of novel Pterostilbene-oxime ether-carboxylic acid (POC) derivatives (d1-d10, e1-e10 and 1-13) were designed, synthesized, and characterized by spectroscopic techniques. In order to further determine the absolute configuration of these compounds, one of them, compound d3, was investigated by X-ray single crystal diffraction method. d3 had a triclinic crystal with P-1 space group, and its CHCH and CHN was confirmed as E configuration. A strong hydrogen bond was formed between the hydrogen atom in CHCH moiety and the nitrogen atom in CHN moiety, which was a vital factor in the formation and stability of E configuration in the CHCH and CHN. The safety and anti-inflammatory activities of compounds (d1-d10, e1-e10 and 1-13) in vitro were evaluated. At 20 μM, compounds (d1-d10, e1-e10 and 1-13 were non-toxic and exhibited weak to strong inhibitory effects on the LPS-induced NO release. Among them, five compounds (1, 2, 7, 8 and 9) showed excellent anti-inflammatory effects with IC50 (NO) values ranging from 9.87 to 19.78 μM, as well as strong COX-2 inhibitory abilities with IC50 (COX-2) values ranging from 85.44 to 140.88 nM. Moreover, there was a rough positive correlation between their anti-inflammatory properties and the COX-2 inhibitory abilities. Compounds (1, 2, 7, 8 and 9) smoothly docked with COX-2 protein (PDB ID: 5KIR) to form stable complexes with strong hydrogen bonds, with an affinity range of -8.3 to -9.9 kcal/mol. SAR indicated that the amidation of POC at R2 position was more favorable for enhancing the compound's biological actives than esterification. In addition, the 4-fluobenzyl substitution at R2 position of the oxime ether moiety can obviously enhance the activity of above amide derivates. Introducing acyl groups (CO(CH2)nCH3, n = 2, 4 and 6) into NH(CH2)3OH group to form ester chain is disadvantageous for activity enhancing, moreover, the longer the carbon chain, the poorer the activity. The strongest COX-2 inhibitor (IC50 (COX-2) = 85.44 ± 3.88 nM), compound 7, exerted as anti-inflammatory activities (IC50 (NO) = 9.87 ± 1.38 μM) by down-regulating the expression of COX-2 and iNOS, and modulating NF-κB/MAPK signaling pathways.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信