Presence of microplastics during high rainfall events in the Cauvery River (South India): Ecological risk and cultural practices

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Jesudason Rajapandian Beulah Thavamani Estherrani, Sakthi Selva Lakshmi Jeyakumar, Johnson Princy Merlin, Johnraj John Christopher, Elangovan Rajalakshmi, Dhineshkumar Sivanantham, Francisco Rodríguez-González, Laura Arreola-Mendoza, Jonathan Muthuswamy Ponniah
{"title":"Presence of microplastics during high rainfall events in the Cauvery River (South India): Ecological risk and cultural practices","authors":"Jesudason Rajapandian Beulah Thavamani Estherrani,&nbsp;Sakthi Selva Lakshmi Jeyakumar,&nbsp;Johnson Princy Merlin,&nbsp;Johnraj John Christopher,&nbsp;Elangovan Rajalakshmi,&nbsp;Dhineshkumar Sivanantham,&nbsp;Francisco Rodríguez-González,&nbsp;Laura Arreola-Mendoza,&nbsp;Jonathan Muthuswamy Ponniah","doi":"10.1007/s10661-024-13421-4","DOIUrl":null,"url":null,"abstract":"<div><p>Rivers directly support the development of a region/country; however, globally, these aquatic regions are impacted by recent human activity. During a rainfall event, we monitored the baseline information on the spatial variability of microplastics (MPs) in the Cauvery River in South India. Forty surface water samples from two selected sites were collected between 27 September and 16 October 2022 during the commencement of monsoon which indicates 69 and 43 pieces L<sup>−1</sup> of MPs, respectively. SEM and FTIR analysis on the surface morphotypes (cracks, grooves, pits) and elemental (Si, Ti, Mg, Cu, Ta) presence/adsorption of these elements’ (in particle) surface indicates surface deformation of fibers, which is mainly due to external input/forces. Fragments of polymers establish a high degree of deterioration indicating its longer trajectory in the aquatic environment. The origin of extended fiber ranges between 631.65 and 5639.9 µm, which is being associated with laundry activities for textiles, household items, and fishing gear. Toxicity and ecological risk assessment suggest significant degree of weathered MPs due to photo-oxidation process and aging owing to exposition of intense UV light. This research serves as a strong illustration of the multiple pressures from urban development and cultural practices that have a bigger influence on the river ecosystem like Cauvery River and regular monitoring.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13421-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rivers directly support the development of a region/country; however, globally, these aquatic regions are impacted by recent human activity. During a rainfall event, we monitored the baseline information on the spatial variability of microplastics (MPs) in the Cauvery River in South India. Forty surface water samples from two selected sites were collected between 27 September and 16 October 2022 during the commencement of monsoon which indicates 69 and 43 pieces L−1 of MPs, respectively. SEM and FTIR analysis on the surface morphotypes (cracks, grooves, pits) and elemental (Si, Ti, Mg, Cu, Ta) presence/adsorption of these elements’ (in particle) surface indicates surface deformation of fibers, which is mainly due to external input/forces. Fragments of polymers establish a high degree of deterioration indicating its longer trajectory in the aquatic environment. The origin of extended fiber ranges between 631.65 and 5639.9 µm, which is being associated with laundry activities for textiles, household items, and fishing gear. Toxicity and ecological risk assessment suggest significant degree of weathered MPs due to photo-oxidation process and aging owing to exposition of intense UV light. This research serves as a strong illustration of the multiple pressures from urban development and cultural practices that have a bigger influence on the river ecosystem like Cauvery River and regular monitoring.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信