A. V. Botkin, R. Z. Valiev, E. P. Volkova, G. D. Khudododova, R. Ebrahimi
{"title":"Effect of Preliminary Deformation on the Formation of Ultrafine-Grained Structure during Equal Channel Angular Pressing of Magnesium Alloys","authors":"A. V. Botkin, R. Z. Valiev, E. P. Volkova, G. D. Khudododova, R. Ebrahimi","doi":"10.1134/S1029959924060055","DOIUrl":null,"url":null,"abstract":"<p>The formation of ultrafine-grained structure is very desirable in the microstructural design of magnesium alloys, in particular Mg-Zn-Ca medical alloy, for a substantial increase in their strength and corrosion resistance. However, conventional processing of these alloys by equal channel angular pressing is not easily applicable due to their low deformability, which often leads to rapid fracture of billets. In this paper, computer simulation data and principles of physical mesomechanics are used to demonstrate that preliminary deformation of Mg alloy billets by reduction at high temperatures and low strain rates significantly increases their deformation capacity and enables equal channel angular pressing at lower temperatures, resulting in billets with ultrafine-grained structure. Consideration is given to the physical nature of the established effect.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 and Elena V. Bobruk","pages":"678 - 686"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924060055","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of ultrafine-grained structure is very desirable in the microstructural design of magnesium alloys, in particular Mg-Zn-Ca medical alloy, for a substantial increase in their strength and corrosion resistance. However, conventional processing of these alloys by equal channel angular pressing is not easily applicable due to their low deformability, which often leads to rapid fracture of billets. In this paper, computer simulation data and principles of physical mesomechanics are used to demonstrate that preliminary deformation of Mg alloy billets by reduction at high temperatures and low strain rates significantly increases their deformation capacity and enables equal channel angular pressing at lower temperatures, resulting in billets with ultrafine-grained structure. Consideration is given to the physical nature of the established effect.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.