Effect of Vanadium-Alloying on Microstructural Evolution and Strengthening Mechanisms of High-Nitrogen Steel Processed by High-Pressure Torsion

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
E. G. Astafurova, G. G. Maier, S. V. Astafurov
{"title":"Effect of Vanadium-Alloying on Microstructural Evolution and Strengthening Mechanisms of High-Nitrogen Steel Processed by High-Pressure Torsion","authors":"E. G. Astafurova,&nbsp;G. G. Maier,&nbsp;S. V. Astafurov","doi":"10.1134/S1029959924060110","DOIUrl":null,"url":null,"abstract":"<p>We study the effect of high-pressure torsion on the microstructure, phase composition, microhardness, and strengthening mechanisms of high-nitrogen austenitic steels with different vanadium content: Fe-23Cr-19Mn-0.2C-0.5N, Fe-19Cr-21Mn-1.3V-0.3C-0.8N, and Fe-18Cr-23Mn-2.6V-0.3C-0.8N, wt %. Regardless of the chemical composition of the steels, high-pressure torsion (HPT) causes the refinement of their microstructure due to a high density of dislocations, twin boundaries, and shear bands. Vanadium alloying decreases the stacking fault probability in the structure of the steels and changes their dominating deformation mechanism under high-pressure torsion: from planar dislocation slip and twinning in the vanadium-free steel to dislocation slip with a tendency to shear band formation in the vanadium-alloyed steels. An increase in the vanadium content forces precipitation hardening. Thus, after HPT, the V-alloyed steels have a higher microhardness as compared to the vanadium-free one. Different strengthening factors (strain hardening, solid solution hardening, and precipitation strengthening) govern the value and kinetics of growth of microhardness of the steels processed by high-pressure torsion. Vanadium alloying and increasing its content result in the growth of the contribution of precipitation hardening and decreases strain hardening of high-nitrogen steels.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 and Elena V. Bobruk","pages":"747 - 759"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1029959924060110.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924060110","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

We study the effect of high-pressure torsion on the microstructure, phase composition, microhardness, and strengthening mechanisms of high-nitrogen austenitic steels with different vanadium content: Fe-23Cr-19Mn-0.2C-0.5N, Fe-19Cr-21Mn-1.3V-0.3C-0.8N, and Fe-18Cr-23Mn-2.6V-0.3C-0.8N, wt %. Regardless of the chemical composition of the steels, high-pressure torsion (HPT) causes the refinement of their microstructure due to a high density of dislocations, twin boundaries, and shear bands. Vanadium alloying decreases the stacking fault probability in the structure of the steels and changes their dominating deformation mechanism under high-pressure torsion: from planar dislocation slip and twinning in the vanadium-free steel to dislocation slip with a tendency to shear band formation in the vanadium-alloyed steels. An increase in the vanadium content forces precipitation hardening. Thus, after HPT, the V-alloyed steels have a higher microhardness as compared to the vanadium-free one. Different strengthening factors (strain hardening, solid solution hardening, and precipitation strengthening) govern the value and kinetics of growth of microhardness of the steels processed by high-pressure torsion. Vanadium alloying and increasing its content result in the growth of the contribution of precipitation hardening and decreases strain hardening of high-nitrogen steels.

钒合金化对高压扭转高氮钢组织演变及强化机制的影响
研究了不同钒含量Fe-23Cr-19Mn-0.2C-0.5N、Fe-19Cr-21Mn-1.3V-0.3C-0.8N和Fe-18Cr-23Mn-2.6V-0.3C-0.8N高氮奥氏体钢的高压扭转对其显微组织、相组成、显微硬度和强化机制的影响。无论钢的化学成分如何,高压扭转(HPT)由于高密度的位错、孪晶界和剪切带而导致其微观结构的细化。钒合金化降低了钢组织中的层错概率,改变了钢在高压扭转作用下的主要变形机制:由无钒钢中的平面位错滑移和孪晶转变为含钒钢中的位错滑移并有剪切带形成的趋势。钒含量的增加促使析出硬化。因此,经过高温热处理后,v合金钢比无钒合金钢具有更高的显微硬度。不同的强化因素(应变硬化、固溶硬化和析出强化)控制高压扭转钢显微硬度的数值和增长动力学。钒合金化和钒含量的增加使高氮钢的析出硬化贡献增大,降低了应变硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信