Retained Austenite Transformation and Portevin–Le Chatelier Effect in 44CrMn2Si2Mo Steel under Tension

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
S. I. Borisov, Yu. I. Borisova, E. S. Tkachev, S. M. Gaidar, R. O. Kaibyshev
{"title":"Retained Austenite Transformation and Portevin–Le Chatelier Effect in 44CrMn2Si2Mo Steel under Tension","authors":"S. I. Borisov,&nbsp;Yu. I. Borisova,&nbsp;E. S. Tkachev,&nbsp;S. M. Gaidar,&nbsp;R. O. Kaibyshev","doi":"10.1134/S1029959924060043","DOIUrl":null,"url":null,"abstract":"<p>The 44CrMn2Si2Mo steel heat treated by quenching and partitioning demonstrates a unique combination of strength characteristics: the yield stress σ<sub>0.2</sub> = 1140 MPa, ultimate strength σ<sub>В</sub> = 1690 MPa, and elongation δ = 20.7%. Quenching and partitioning leads to the formation of a multiphase structure consisting of primary martensite, retained austenite, bainite, and secondary martensite. Primary martensite and bainite contain transition-metal carbides Fe<sub>2</sub>C. The high ductility of the steel is due to the transformation of retained austenite into strain-induced martensite during tension, which ensures high strain hardening. Stable plastic flow is observed at low strain, when a significant fraction of retained austenite is transformed into strain-induced martensite. The plastic flow instability, which appears as the Portevin–Le Chatelier effect on deformation curves and plastic flow localization in deformation bands, occurs at higher strains and is associated with the transformation of film-like retained austenite. The velocity of deformation bands decreases with a decrease in the volume fraction of retained austenite. Localization of plastic flow in the neck and fracture occur when the transformation of retained austenite into strain-induced martensite cannot provide strain hardening, and deformation bands lose their mobility.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 and Elena V. Bobruk","pages":"664 - 677"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924060043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The 44CrMn2Si2Mo steel heat treated by quenching and partitioning demonstrates a unique combination of strength characteristics: the yield stress σ0.2 = 1140 MPa, ultimate strength σВ = 1690 MPa, and elongation δ = 20.7%. Quenching and partitioning leads to the formation of a multiphase structure consisting of primary martensite, retained austenite, bainite, and secondary martensite. Primary martensite and bainite contain transition-metal carbides Fe2C. The high ductility of the steel is due to the transformation of retained austenite into strain-induced martensite during tension, which ensures high strain hardening. Stable plastic flow is observed at low strain, when a significant fraction of retained austenite is transformed into strain-induced martensite. The plastic flow instability, which appears as the Portevin–Le Chatelier effect on deformation curves and plastic flow localization in deformation bands, occurs at higher strains and is associated with the transformation of film-like retained austenite. The velocity of deformation bands decreases with a decrease in the volume fraction of retained austenite. Localization of plastic flow in the neck and fracture occur when the transformation of retained austenite into strain-induced martensite cannot provide strain hardening, and deformation bands lose their mobility.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信