Mathematical Modeling of Complex-Shape Forming of Ultrafine-Grained Ti Alloy and Subsequent Deposition of Protective High-Entropy Coatings

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
R. R. Valiev, A. V. Oleinik, R. N. Asfandiyarov, A. Yu. Nazarov, K. N. Ramazanov, Ya. N. Savina, A. R. Kilmametov
{"title":"Mathematical Modeling of Complex-Shape Forming of Ultrafine-Grained Ti Alloy and Subsequent Deposition of Protective High-Entropy Coatings","authors":"R. R. Valiev,&nbsp;A. V. Oleinik,&nbsp;R. N. Asfandiyarov,&nbsp;A. Yu. Nazarov,&nbsp;K. N. Ramazanov,&nbsp;Ya. N. Savina,&nbsp;A. R. Kilmametov","doi":"10.1134/S1029959924060092","DOIUrl":null,"url":null,"abstract":"<p>The paper reports on finite element simulation of extrusion of a complex-shaped billet from the ultrafine-grained Ti-6Al-4V alloy and vacuum-arc deposition of a protective coating based on the TiVZrCrAl high-entropy alloy. Temperature fields formed in the billet during extrusion are studied. Deformation heating and the necessary forming force are determined for the initial temperature-rate conditions. The strain rate distribution in the billet during extrusion is also analyzed. According to the obtained data, the chosen temperature-rate conditions allow using the ultrafine-grained titanium alloy as the initial billet without deteriorating its mechanical characteristics. Computer simulation of the coating deposition on the complex-shaped billet provides values of the temperature, chemical composition, and thickness of the high-entropy coating. Thus, the coating thickness varies within 6.5–7.5 μm, and the surface is heated during deposition to 368–597°C, which allows maintaining the ultrafine-grained structure in the alloy.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 and Elena V. Bobruk","pages":"725 - 735"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924060092","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper reports on finite element simulation of extrusion of a complex-shaped billet from the ultrafine-grained Ti-6Al-4V alloy and vacuum-arc deposition of a protective coating based on the TiVZrCrAl high-entropy alloy. Temperature fields formed in the billet during extrusion are studied. Deformation heating and the necessary forming force are determined for the initial temperature-rate conditions. The strain rate distribution in the billet during extrusion is also analyzed. According to the obtained data, the chosen temperature-rate conditions allow using the ultrafine-grained titanium alloy as the initial billet without deteriorating its mechanical characteristics. Computer simulation of the coating deposition on the complex-shaped billet provides values of the temperature, chemical composition, and thickness of the high-entropy coating. Thus, the coating thickness varies within 6.5–7.5 μm, and the surface is heated during deposition to 368–597°C, which allows maintaining the ultrafine-grained structure in the alloy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信