Adil Khan , Syed Agha Hassnain Mohsan , Abdelrahman Elfikky , Ayman I. Boghdady , Shabeer Ahmad , Nisreen Innab
{"title":"A survey of intelligent reflecting surfaces: Performance analysis, extensions, potential challenges, and open research issues","authors":"Adil Khan , Syed Agha Hassnain Mohsan , Abdelrahman Elfikky , Ayman I. Boghdady , Shabeer Ahmad , Nisreen Innab","doi":"10.1016/j.vehcom.2024.100859","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancements in wireless communication have underscored the need for innovative solutions to enhance network performance, spectral efficiency, and energy savings. Intelligent Reflecting Surface (IRS) technology has emerged as a transformative approach that passively reconfigures wireless propagation environments, offering significant improvements without active power consumption. This survey provides a comprehensive analysis of IRS technology, covering its architecture, operational principles, and integration into next-generation wireless networks. We examine key performance metrics in various application scenarios, demonstrating IRS's potential to improve coverage, signal quality, and energy efficiency, with up to 40% higher spectral efficiency and substantial energy savings over traditional networks. The survey also explores the integration of IRS with advanced multiple access techniques such as Non-Orthogonal Multiple Access (NOMA) and Terahertz (THz) communication, positioning IRS as a critical enabler in future 6G networks. This survey contributes by offering an in-depth review of IRS design principles and operational mechanisms, presenting a performance analysis in various scenarios that highlights IRS's ability to improve network efficiency, and identifying practical challenges and open research areas, such as the need for robust channel estimation methods, effective interference management in dense networks, and IRS solutions scalable for urban and rural deployments. Additionally, we discuss the future trajectory of IRS standardization and the regulatory frameworks essential for large-scale deployment. By summarizing advancements and identifying key research directions, this survey aims to serve as a valuable reference for researchers and practitioners seeking to advance IRS technology in future wireless networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100859"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001347","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancements in wireless communication have underscored the need for innovative solutions to enhance network performance, spectral efficiency, and energy savings. Intelligent Reflecting Surface (IRS) technology has emerged as a transformative approach that passively reconfigures wireless propagation environments, offering significant improvements without active power consumption. This survey provides a comprehensive analysis of IRS technology, covering its architecture, operational principles, and integration into next-generation wireless networks. We examine key performance metrics in various application scenarios, demonstrating IRS's potential to improve coverage, signal quality, and energy efficiency, with up to 40% higher spectral efficiency and substantial energy savings over traditional networks. The survey also explores the integration of IRS with advanced multiple access techniques such as Non-Orthogonal Multiple Access (NOMA) and Terahertz (THz) communication, positioning IRS as a critical enabler in future 6G networks. This survey contributes by offering an in-depth review of IRS design principles and operational mechanisms, presenting a performance analysis in various scenarios that highlights IRS's ability to improve network efficiency, and identifying practical challenges and open research areas, such as the need for robust channel estimation methods, effective interference management in dense networks, and IRS solutions scalable for urban and rural deployments. Additionally, we discuss the future trajectory of IRS standardization and the regulatory frameworks essential for large-scale deployment. By summarizing advancements and identifying key research directions, this survey aims to serve as a valuable reference for researchers and practitioners seeking to advance IRS technology in future wireless networks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.