{"title":"QuIDS: A Quantum Support Vector machine-based Intrusion Detection System for IoT networks","authors":"Rakesh Kumar, Mayank Swarnkar","doi":"10.1016/j.jnca.2024.104072","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of IoT, there has been a noticeable surge in security breaches associated with vulnerable IoT devices. To identify and counter such attacks. Intrusion Detection Systems (IDS) are deployed. However, these IoT devices use device-specific application layer protocols like MQTT and CoAP, which pose an additional burden to the traditional IDS. Several Machine Learning (ML) and Deep Learning (DL) based IDS are developed to detect malicious IoT network traffic. However, in recent times, a variety of IoT devices have been available on the market, resulting in the frequent installation and uninstallation of IoT devices based on users’ needs. Moreover, ML and DL-based IDS must train with sufficient device-specific attack training data for each IoT device, consuming a noticeable amount of training time. To solve these problems, we propose QuIDS, which utilizes a Quantum Support Vector Classifier to classify attacks in an IoT network. QuIDS requires very little training data compared to ML or DL to train and accurately identify attacks in the IoT network. QuIDS extracts eight flow-level features from IoT network traffic and utilizes them over four quantum bits for training. We experimented with QuIDS on two publicly available datasets and found the average recall rate, precision, and f1-score of the QuIDS as 91.1%, 84.3%, and 86.4%, respectively. Moreover, comparing QuIDS with the ML and DL methods, we found that QuIDS outperformed by 37.7%, 24.4.6%, and 36.9% more average recall and precision rates than the ML and DL methods, respectively.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"60 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104072","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing popularity of IoT, there has been a noticeable surge in security breaches associated with vulnerable IoT devices. To identify and counter such attacks. Intrusion Detection Systems (IDS) are deployed. However, these IoT devices use device-specific application layer protocols like MQTT and CoAP, which pose an additional burden to the traditional IDS. Several Machine Learning (ML) and Deep Learning (DL) based IDS are developed to detect malicious IoT network traffic. However, in recent times, a variety of IoT devices have been available on the market, resulting in the frequent installation and uninstallation of IoT devices based on users’ needs. Moreover, ML and DL-based IDS must train with sufficient device-specific attack training data for each IoT device, consuming a noticeable amount of training time. To solve these problems, we propose QuIDS, which utilizes a Quantum Support Vector Classifier to classify attacks in an IoT network. QuIDS requires very little training data compared to ML or DL to train and accurately identify attacks in the IoT network. QuIDS extracts eight flow-level features from IoT network traffic and utilizes them over four quantum bits for training. We experimented with QuIDS on two publicly available datasets and found the average recall rate, precision, and f1-score of the QuIDS as 91.1%, 84.3%, and 86.4%, respectively. Moreover, comparing QuIDS with the ML and DL methods, we found that QuIDS outperformed by 37.7%, 24.4.6%, and 36.9% more average recall and precision rates than the ML and DL methods, respectively.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.