Target-aware attentional network for rare class segmentation in large-scale LiDAR point clouds

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Xinlong Zhang, Dong Lin, Uwe Soergel
{"title":"Target-aware attentional network for rare class segmentation in large-scale LiDAR point clouds","authors":"Xinlong Zhang, Dong Lin, Uwe Soergel","doi":"10.1016/j.isprsjprs.2024.11.012","DOIUrl":null,"url":null,"abstract":"Semantic interpretation of 3D scenes poses a formidable challenge in point cloud processing, which also stands as a requisite undertaking across various fields of application involving point clouds. Although a number of point cloud segmentation methods have achieved leading performance, 3D rare class segmentation continues to be a challenge owing to the imbalanced distribution of fine-grained classes and the complexity of large scenes. In this paper, we present target-aware attentional network (TaaNet), a novel mask-constrained attention framework to address 3D semantic segmentation of imbalanced classes in large-scale point clouds. Adapting the self-attention mechanism, a hierarchical aggregation strategy is first applied to enhance the learning of point-wise features across various scales, which leverages both global and local perspectives to guarantee presence of fine-grained patterns in the case of scenes with high complexity. Subsequently, rare target masks are imposed by a contextual module on the hierarchical features. Specifically, a target-aware aggregator is proposed to boost discriminative features of rare classes, which constrains hierarchical features with learnable adaptive weights and simultaneously embeds confidence constraints of rare classes. Furthermore, a target pseudo-labeling strategy based on strong contour cues of rare classes is designed, which effectively delivers instance-level supervisory signals restricted to rare targets only. We conducted thorough experiments on four multi-platform LiDAR benchmarks, i.e., airborne, mobile and terrestrial platforms, to assess the performance of our framework. Results demonstrate that compared to other commonly used advanced segmentation methods, our method can obtain not only high segmentation accuracy but also remarkable F1-scores in rare classes. In a submission to the official ranking page of Hessigheim 3D benchmark, our approach achieves a state-of-the-art mean F1-score of 83.84% and an outstanding overall accuracy (OA) of 90.45%. In particular, the F1-scores of rare classes namely vehicles and chimneys notably exceed the average of other published methods by a wide margin, boosting by 32.00% and 32.46%, respectively. Additionally, extensive experimental analysis on benchmarks collected from multiple platforms, Paris-Lille-3D, Semantic3D and WHU-Urban3D, validates the robustness and effectiveness of the proposed method.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"91 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2024.11.012","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic interpretation of 3D scenes poses a formidable challenge in point cloud processing, which also stands as a requisite undertaking across various fields of application involving point clouds. Although a number of point cloud segmentation methods have achieved leading performance, 3D rare class segmentation continues to be a challenge owing to the imbalanced distribution of fine-grained classes and the complexity of large scenes. In this paper, we present target-aware attentional network (TaaNet), a novel mask-constrained attention framework to address 3D semantic segmentation of imbalanced classes in large-scale point clouds. Adapting the self-attention mechanism, a hierarchical aggregation strategy is first applied to enhance the learning of point-wise features across various scales, which leverages both global and local perspectives to guarantee presence of fine-grained patterns in the case of scenes with high complexity. Subsequently, rare target masks are imposed by a contextual module on the hierarchical features. Specifically, a target-aware aggregator is proposed to boost discriminative features of rare classes, which constrains hierarchical features with learnable adaptive weights and simultaneously embeds confidence constraints of rare classes. Furthermore, a target pseudo-labeling strategy based on strong contour cues of rare classes is designed, which effectively delivers instance-level supervisory signals restricted to rare targets only. We conducted thorough experiments on four multi-platform LiDAR benchmarks, i.e., airborne, mobile and terrestrial platforms, to assess the performance of our framework. Results demonstrate that compared to other commonly used advanced segmentation methods, our method can obtain not only high segmentation accuracy but also remarkable F1-scores in rare classes. In a submission to the official ranking page of Hessigheim 3D benchmark, our approach achieves a state-of-the-art mean F1-score of 83.84% and an outstanding overall accuracy (OA) of 90.45%. In particular, the F1-scores of rare classes namely vehicles and chimneys notably exceed the average of other published methods by a wide margin, boosting by 32.00% and 32.46%, respectively. Additionally, extensive experimental analysis on benchmarks collected from multiple platforms, Paris-Lille-3D, Semantic3D and WHU-Urban3D, validates the robustness and effectiveness of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信