{"title":"Hawking radiation with pure states","authors":"K. Sravan Kumar, João Marto","doi":"10.1007/s10714-024-03329-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hawking’s seminal work on black hole radiation highlights a critical issue in our understanding of quantum field theory in curved spacetime (QFTCS), specifically the problem of unitarity loss (where pure states evolve into mixed states). In this paper, we examine a recent proposal for a direct-sum QFTCS, which maintains unitarity through a novel quantization method that employs geometric superselection rules based on discrete spacetime transformations. This approach describes a quantum state in terms of components that evolve within geometric superselection sectors of the complete Hilbert space, adhering to the discrete symmetries of a Schwarzschild black hole. Consequently, it represents a maximally entangled pure state as a direct-sum of two components in the interior and exterior regions of the black hole, thereby preserving the unitarity of Hawking radiation by keeping it in the form of pure states.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03329-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03329-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hawking’s seminal work on black hole radiation highlights a critical issue in our understanding of quantum field theory in curved spacetime (QFTCS), specifically the problem of unitarity loss (where pure states evolve into mixed states). In this paper, we examine a recent proposal for a direct-sum QFTCS, which maintains unitarity through a novel quantization method that employs geometric superselection rules based on discrete spacetime transformations. This approach describes a quantum state in terms of components that evolve within geometric superselection sectors of the complete Hilbert space, adhering to the discrete symmetries of a Schwarzschild black hole. Consequently, it represents a maximally entangled pure state as a direct-sum of two components in the interior and exterior regions of the black hole, thereby preserving the unitarity of Hawking radiation by keeping it in the form of pure states.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.