Learning soft tissue deformation from incremental simulations

IF 3.2 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Medical physics Pub Date : 2024-12-06 DOI:10.1002/mp.17554
Nathan Lampen, Daeseung Kim, Xuanang Xu, Xi Fang, Jungwook Lee, Tianshu Kuang, Hannah H. Deng, Michael A. K. Liebschner, Jaime Gateno, Pingkun Yan
{"title":"Learning soft tissue deformation from incremental simulations","authors":"Nathan Lampen,&nbsp;Daeseung Kim,&nbsp;Xuanang Xu,&nbsp;Xi Fang,&nbsp;Jungwook Lee,&nbsp;Tianshu Kuang,&nbsp;Hannah H. Deng,&nbsp;Michael A. K. Liebschner,&nbsp;Jaime Gateno,&nbsp;Pingkun Yan","doi":"10.1002/mp.17554","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Surgical planning for orthognathic procedures demands swift and accurate biomechanical modeling of facial soft tissues. Efficient simulations are vital in the clinical pipeline, as surgeons may iterate through multiple plans. Biomechanical simulations typically use the finite element method (FEM). Prior works divide FEM simulations into increments to enhance convergence and accuracy. However, this practice elongates simulation time, thereby impeding clinical integration. To accelerate simulations, deep learning (DL) models have been explored. Yet, previous efforts either perform simulations in a single step or neglect the temporal aspects in incremental simulations.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study investigates the use of spatiotemporal incremental modeling for biomechanics simulations of facial soft tissue.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We implement the method using a graph neural network. Our method synergizes spatial features with temporal aggregation using DL networks trained on incremental FEM simulations from 17 subjects that underwent orthognathic surgery.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our proposed spatiotemporal incremental method achieved a mean accuracy of 0.37 mm with a mean computation time of 1.52 s. In comparison, a spatial-only incremental method yielded a mean accuracy of 0.44 mm and a mean computation time of 1.60 s, while a spatial-only single-step method yielded a mean accuracy of 0.41 mm and a mean computation time of 0.05 s.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Statistical analysis demonstrated that the spatiotemporal incremental method reduced mean errors compared to the spatial-only incremental method, emphasizing the importance of incorporating temporal information in incremental simulations. Overall, we successfully implemented spatiotemporal incremental learning tailored to simulate soft tissue deformation while substantially reducing simulation time compared to FEM.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 3","pages":"1914-1925"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17554","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Surgical planning for orthognathic procedures demands swift and accurate biomechanical modeling of facial soft tissues. Efficient simulations are vital in the clinical pipeline, as surgeons may iterate through multiple plans. Biomechanical simulations typically use the finite element method (FEM). Prior works divide FEM simulations into increments to enhance convergence and accuracy. However, this practice elongates simulation time, thereby impeding clinical integration. To accelerate simulations, deep learning (DL) models have been explored. Yet, previous efforts either perform simulations in a single step or neglect the temporal aspects in incremental simulations.

Purpose

This study investigates the use of spatiotemporal incremental modeling for biomechanics simulations of facial soft tissue.

Methods

We implement the method using a graph neural network. Our method synergizes spatial features with temporal aggregation using DL networks trained on incremental FEM simulations from 17 subjects that underwent orthognathic surgery.

Results

Our proposed spatiotemporal incremental method achieved a mean accuracy of 0.37 mm with a mean computation time of 1.52 s. In comparison, a spatial-only incremental method yielded a mean accuracy of 0.44 mm and a mean computation time of 1.60 s, while a spatial-only single-step method yielded a mean accuracy of 0.41 mm and a mean computation time of 0.05 s.

Conclusions

Statistical analysis demonstrated that the spatiotemporal incremental method reduced mean errors compared to the spatial-only incremental method, emphasizing the importance of incorporating temporal information in incremental simulations. Overall, we successfully implemented spatiotemporal incremental learning tailored to simulate soft tissue deformation while substantially reducing simulation time compared to FEM.

从增量模拟中学习软组织变形。
背景:正颌手术计划需要快速准确的面部软组织生物力学建模。高效的模拟在临床流程中是至关重要的,因为外科医生可能会重复使用多个计划。生物力学模拟通常使用有限元法(FEM)。为了提高收敛性和准确性,以前的工作将有限元模拟分成增量。然而,这种做法延长了模拟时间,从而阻碍了临床整合。为了加速模拟,人们探索了深度学习(DL)模型。然而,以往的研究要么是单步模拟,要么是在增量模拟中忽略了时间方面。目的:研究基于时空增量模型的面部软组织生物力学模拟。方法:采用图神经网络实现该方法。我们的方法使用DL网络将空间特征与时间聚合协同起来,这些网络是在17名接受正颌手术的受试者的增量有限元模拟上训练的。结果:本文提出的时空增量法平均精度为0.37 mm,平均计算时间为1.52 s。相比之下,纯空间增量法的平均精度为0.44 mm,平均计算时间为1.60 s,而纯空间单步法的平均精度为0.41 mm,平均计算时间为0.05 s。结论:统计分析表明,与单纯的空间增量方法相比,时空增量方法减少了平均误差,强调了在增量模拟中纳入时间信息的重要性。总的来说,我们成功地实现了为模拟软组织变形量身定制的时空增量学习,同时与FEM相比大大减少了模拟时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical physics
Medical physics 医学-核医学
CiteScore
6.80
自引率
15.80%
发文量
660
审稿时长
1.7 months
期刊介绍: Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信