The Lambert diffuse reflection model revisited.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
U Peter Svensson, Lauri Savioja
{"title":"The Lambert diffuse reflection model revisited.","authors":"U Peter Svensson, Lauri Savioja","doi":"10.1121/10.0034561","DOIUrl":null,"url":null,"abstract":"<p><p>The Lambert diffuse reflection model is used widely in computerized prediction of sound in rooms as well as for outdoor scenarios. One seemingly surprising consequence of the model was pointed out by Borish [J. Audio Eng. Soc. 34, 539-545 (1986)]: A diffusely reflecting, non-absorbing wall seems to give a 3 dB stronger reflection than a specularly reflecting wall for a source and receiver along the same plane normal. Similar observations have been made by others, and it is usually commented that the two reflection types distribute the reflected energy in different directions. The aspect of energy conservation does not seem to have been sorted out entirely. It is shown here that the difference between an omnidirectional receiver, like a microphone, and a surface element receiver, which can give the total reflected power, explains the claim. Analytic solutions and numerical evaluations of the well-known integrals for a single infinite wall confirm that energy conservation is indeed maintained and also lead to a spatial distribution of the Lambert reflection strength, which differs substantially from the previously published values. The special case can serve as a useful benchmark test of implementations of diffuse reflections, which follow Lambert's law.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"3788-3796"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034561","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Lambert diffuse reflection model is used widely in computerized prediction of sound in rooms as well as for outdoor scenarios. One seemingly surprising consequence of the model was pointed out by Borish [J. Audio Eng. Soc. 34, 539-545 (1986)]: A diffusely reflecting, non-absorbing wall seems to give a 3 dB stronger reflection than a specularly reflecting wall for a source and receiver along the same plane normal. Similar observations have been made by others, and it is usually commented that the two reflection types distribute the reflected energy in different directions. The aspect of energy conservation does not seem to have been sorted out entirely. It is shown here that the difference between an omnidirectional receiver, like a microphone, and a surface element receiver, which can give the total reflected power, explains the claim. Analytic solutions and numerical evaluations of the well-known integrals for a single infinite wall confirm that energy conservation is indeed maintained and also lead to a spatial distribution of the Lambert reflection strength, which differs substantially from the previously published values. The special case can serve as a useful benchmark test of implementations of diffuse reflections, which follow Lambert's law.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信