Enrique González-Mateo, Francisco Camarena, Noé Jiménez
{"title":"Real-time ultrasound shear wave elastography using a local phase gradient.","authors":"Enrique González-Mateo, Francisco Camarena, Noé Jiménez","doi":"10.1016/j.cmpb.2024.108529","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Current approaches for ultrasound spectral elastography make use of block processing, resulting in long computational times. This work describes a real-time, robust, and quantitative imaging modality to map the elastic and viscoelastic properties of soft tissues using ultrasound.</p><p><strong>Methods: </strong>This elastographic technique relies on the spectral estimation of the shear-wave phase speed by combining a local phase-gradient method and angular filtering. We first apply directional filtering in the spatio-temporal frequency domain for providing one-way, smooth, and harmonic displacement maps in the frequency range of interest. Thanks to this, we can apply a simple, fast, and local phase gradient approach to obtain the axial and lateral components of the wavevector, which are linked to phase velocity and soft-tissue elasticity and viscoelasticity. The technique is validated numerically and experimentally using a 7.6 MHz ultrasound probe, tested in calibrated soft-tissue phantoms and ex vivo liver tissues. The method is compared with state-of-the-art spectral methods.</p><p><strong>Results: </strong>The technique significantly reduces the computation time, e.g., the reconstruction time for a 155 × 315-pixel phase-velocity map was 0.16 s, while local-phase velocity-imaging techniques was 156.73 s for 2D implementation and 13.56 s for the 1D version, a reduction between two and three orders of magnitude, while showing a similar accuracy and resolution than standard methods.</p><p><strong>Conclusions: </strong>This approach eliminates the need for block processing that may limit the spatial resolution and computational time of the velocity map. In this way, the phase gradient elastography method is revealed as an efficient and robust approach for real-time spectral elastography.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108529"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108529","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: Current approaches for ultrasound spectral elastography make use of block processing, resulting in long computational times. This work describes a real-time, robust, and quantitative imaging modality to map the elastic and viscoelastic properties of soft tissues using ultrasound.
Methods: This elastographic technique relies on the spectral estimation of the shear-wave phase speed by combining a local phase-gradient method and angular filtering. We first apply directional filtering in the spatio-temporal frequency domain for providing one-way, smooth, and harmonic displacement maps in the frequency range of interest. Thanks to this, we can apply a simple, fast, and local phase gradient approach to obtain the axial and lateral components of the wavevector, which are linked to phase velocity and soft-tissue elasticity and viscoelasticity. The technique is validated numerically and experimentally using a 7.6 MHz ultrasound probe, tested in calibrated soft-tissue phantoms and ex vivo liver tissues. The method is compared with state-of-the-art spectral methods.
Results: The technique significantly reduces the computation time, e.g., the reconstruction time for a 155 × 315-pixel phase-velocity map was 0.16 s, while local-phase velocity-imaging techniques was 156.73 s for 2D implementation and 13.56 s for the 1D version, a reduction between two and three orders of magnitude, while showing a similar accuracy and resolution than standard methods.
Conclusions: This approach eliminates the need for block processing that may limit the spatial resolution and computational time of the velocity map. In this way, the phase gradient elastography method is revealed as an efficient and robust approach for real-time spectral elastography.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.