Dependence of acoustophoretic aggregation on the impedance of microchannel's walls.

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yiming Li, Dongfang Liang, Alexandre Kabla, Yuning Zhang, Jun Ma, Xin Yang
{"title":"Dependence of acoustophoretic aggregation on the impedance of microchannel's walls.","authors":"Yiming Li, Dongfang Liang, Alexandre Kabla, Yuning Zhang, Jun Ma, Xin Yang","doi":"10.1016/j.cmpb.2024.108530","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Acoustofluidic manipulation of particles and biological cells has been widely applied in various biomedical and engineering applications, including effective separation of cancer cell, point-of-care diagnosis, and cell patterning for tissue engineering. It is often implemented within a polydimethylsiloxane (PDMS) microchannel, where standing surface acoustic waves (SSAW) are generated by sending two counter-propagating ultrasonic waves on a piezoelectric substrate.</p><p><strong>Methods: </strong>In this paper, we develop a full cross-sectional model of the acoustofluidic device using finite element method, simulating the wave excitation on the substrate and wave propagation in both the fluid and the microchannel wall. This model allows us to carry out extensive parametric analyses concerning the acoustic properties of the fluid and the microchannel wall, as well as the dimensions of the channel, to explore their influences on the acoustic field, fluid flow and microparticle aggregation.</p><p><strong>Results: </strong>Our findings demonstrate an order-of-magnitude enhancement in acoustic pressure amplitude and aggregation speed and a reduction in the particle threshold radius to submicron levels, which can be achieved through adjustments to the channel height and the difference in acoustic impedance between the channel wall and the fluid. The optimum channel heights are determined, which depend on the acoustic properties of the channel wall. The particle trajectories, movements along pressure nodal planes, and terminal positions are identified, with relative strength between the radiation force and the streaming force compared in different combinations of parameters.</p><p><strong>Conclusions: </strong>This work demonstrates that finetuning the dimensions and acoustic properties of the fluid and microchannel wall in acoustofluidic device can greatly enhance particle aggregation throughput and reduce constraints on particle size. Our findings offer valuable insights into device design and optimization.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108530"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Acoustofluidic manipulation of particles and biological cells has been widely applied in various biomedical and engineering applications, including effective separation of cancer cell, point-of-care diagnosis, and cell patterning for tissue engineering. It is often implemented within a polydimethylsiloxane (PDMS) microchannel, where standing surface acoustic waves (SSAW) are generated by sending two counter-propagating ultrasonic waves on a piezoelectric substrate.

Methods: In this paper, we develop a full cross-sectional model of the acoustofluidic device using finite element method, simulating the wave excitation on the substrate and wave propagation in both the fluid and the microchannel wall. This model allows us to carry out extensive parametric analyses concerning the acoustic properties of the fluid and the microchannel wall, as well as the dimensions of the channel, to explore their influences on the acoustic field, fluid flow and microparticle aggregation.

Results: Our findings demonstrate an order-of-magnitude enhancement in acoustic pressure amplitude and aggregation speed and a reduction in the particle threshold radius to submicron levels, which can be achieved through adjustments to the channel height and the difference in acoustic impedance between the channel wall and the fluid. The optimum channel heights are determined, which depend on the acoustic properties of the channel wall. The particle trajectories, movements along pressure nodal planes, and terminal positions are identified, with relative strength between the radiation force and the streaming force compared in different combinations of parameters.

Conclusions: This work demonstrates that finetuning the dimensions and acoustic properties of the fluid and microchannel wall in acoustofluidic device can greatly enhance particle aggregation throughput and reduce constraints on particle size. Our findings offer valuable insights into device design and optimization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信