Shape diagram determination of a multiphase system in stratified configuration by CFD

IF 2.2 3区 工程技术 Q2 MECHANICS
Emma O. Erezuma-de-la-Hoz, Alejandro J. García-Cuéllar, José Luis López-Salinas
{"title":"Shape diagram determination of a multiphase system in stratified configuration by CFD","authors":"Emma O. Erezuma-de-la-Hoz,&nbsp;Alejandro J. García-Cuéllar,&nbsp;José Luis López-Salinas","doi":"10.1007/s00162-024-00726-w","DOIUrl":null,"url":null,"abstract":"<p>Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (<i>Re</i>) and Bond (<i>Bo</i>) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-024-00726-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (Re) and Bond (Bo) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.

Abstract Image

多层结构多相系统形状图的CFD确定
采用流体体积法对水(顶部)、熔融金属(底部)和蒸汽(两者之间)的多相流现象进行了数值研究。像这样的多相流系统存在于广泛的工业应用和自然现象中,并且由于其产生能量的潜力而被广泛研究。由于界面形状对传热速率的影响,本工作特别关注界面形状。提出了一种基于Reynolds (Re)和Bond (Bo)无因次数构造界面形状图的新方法。该模型对控制力如粘滞力、惯性力和表面张力具有较好的辨识能力。确定了有效预混相的最佳界面形状。预混的意义在于它对蒸汽爆炸产生的决定性作用。此外,还考察了密度比和触发压力的影响。此外,还观察了Kelvin-Helmholtz和Rayleigh-Taylor破碎机制,并分析了它们的优势。所得结果与文献中已有的实验数据一致。本文旨在提供有用的信息,以增强我们对这一现象的基本认识,并适用于不同研究领域的进一步数值和实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信