{"title":"Detecting gravitational waves via coherence degradation induced by the Unruh effect","authors":"Pedro H. M. Barros, Helder A. S. Costa","doi":"10.1140/epjc/s10052-024-13639-z","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the effects of a gravitational wave background on the coherence degradation induced by the Unruh effect of a uniformly accelerated single-qubit and quantum interferometric circuit. In both systems, we use the formalism of the evolution of the density matrix of the detector-field system, where after the interaction the field degrees of freedom are traced out to obtain the reduced density matrix of the detector. In this background, we calculate the quantum coherence and interferometric visibility in the long-wavelength regime and large interaction time. Our results indicate that the gravitational wave transfers energy to the internal states of the detector, causing, together with the Unruh effect, changes in them, amplifying the coherence degradation of the system. This amplification occurs when the polarization modes of the gravitational wave are in resonance and have modulated amplitudes. For the case of a short-wavelength, the detector does not respond to the gravitational wave because its oscillation is so fast that the detector does not have time to respond within the system timescale. Therefore, it is possible to detect the signature of gravitational waves in the coherence degradation induced by the Unruh effect within the regimes studied here.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13639-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13639-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effects of a gravitational wave background on the coherence degradation induced by the Unruh effect of a uniformly accelerated single-qubit and quantum interferometric circuit. In both systems, we use the formalism of the evolution of the density matrix of the detector-field system, where after the interaction the field degrees of freedom are traced out to obtain the reduced density matrix of the detector. In this background, we calculate the quantum coherence and interferometric visibility in the long-wavelength regime and large interaction time. Our results indicate that the gravitational wave transfers energy to the internal states of the detector, causing, together with the Unruh effect, changes in them, amplifying the coherence degradation of the system. This amplification occurs when the polarization modes of the gravitational wave are in resonance and have modulated amplitudes. For the case of a short-wavelength, the detector does not respond to the gravitational wave because its oscillation is so fast that the detector does not have time to respond within the system timescale. Therefore, it is possible to detect the signature of gravitational waves in the coherence degradation induced by the Unruh effect within the regimes studied here.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.