Uncertainty quantification for conical hole expansion test of DP800 sheet metal

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Quoc Tuan Pham, Alexander Barlo, Md Shafiqul Islam, Mats Sigvant, Johan Pilthammar, Lluís Pérez Caro, Vili Kesti
{"title":"Uncertainty quantification for conical hole expansion test of DP800 sheet metal","authors":"Quoc Tuan Pham,&nbsp;Alexander Barlo,&nbsp;Md Shafiqul Islam,&nbsp;Mats Sigvant,&nbsp;Johan Pilthammar,&nbsp;Lluís Pérez Caro,&nbsp;Vili Kesti","doi":"10.1007/s12289-024-01869-1","DOIUrl":null,"url":null,"abstract":"<div><p>The hole expansion ratio (HER) observed in a standardized hole expansion test (HET) is commonly used to determine the edge fracture of steel sheets. A large variation of the measured HER restricts the practical application of the method. This study presents a systematic investigation on uncertainties in the HER of DP800 sheet material, including the hole-edge quality, pre-strain due to the hole-punching process, the friction coefficient, and the determination of fracture. An artificial neural network was trained to develop a surrogate model using a database gained from a thousand finite element simulations of the HET. Monte-Carlo simulations were performed using the trained surrogate model to characterize the distribution of the HER. Sensitivity analysis via Sobol’s indices is calculated to determine the influence of the input variables on the output. It is found that the pre-strain and pre-damage generated during the hole punching process in the shear-affected zone dominate the variation of the HER. Discussions on reducing the output’s variation are detailed. In general, these findings provide valuable insights for the determination of HER as well as the edge crack behavior of the investigated DP800 steel sheet.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01869-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01869-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The hole expansion ratio (HER) observed in a standardized hole expansion test (HET) is commonly used to determine the edge fracture of steel sheets. A large variation of the measured HER restricts the practical application of the method. This study presents a systematic investigation on uncertainties in the HER of DP800 sheet material, including the hole-edge quality, pre-strain due to the hole-punching process, the friction coefficient, and the determination of fracture. An artificial neural network was trained to develop a surrogate model using a database gained from a thousand finite element simulations of the HET. Monte-Carlo simulations were performed using the trained surrogate model to characterize the distribution of the HER. Sensitivity analysis via Sobol’s indices is calculated to determine the influence of the input variables on the output. It is found that the pre-strain and pre-damage generated during the hole punching process in the shear-affected zone dominate the variation of the HER. Discussions on reducing the output’s variation are detailed. In general, these findings provide valuable insights for the determination of HER as well as the edge crack behavior of the investigated DP800 steel sheet.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信