Crystal mush remobilization in the Bandelier magmatic system: evidence from compositional zonation in clinopyroxene

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Nicholas F. Meszaros, James E. Gardner
{"title":"Crystal mush remobilization in the Bandelier magmatic system: evidence from compositional zonation in clinopyroxene","authors":"Nicholas F. Meszaros,&nbsp;James E. Gardner","doi":"10.1007/s00410-024-02187-0","DOIUrl":null,"url":null,"abstract":"<div><p>Compositionally zoned crystals can record changing melt composition and trace element partitioning behavior during magmatic differentiation. Diffusive reequilibration between compositionally distinct zones in crystals can also produce compositional gradients. Here, we compare the length scales of concentration gradients for different elements in clinopyroxene that originate from the Tshirege Tuff and late Valle Toledo Member rhyolites of the Bandelier magmatic system in New Mexico to determine what petrogenetic information is recorded in the zonation. Within these rhyolites there are unzoned ferrohedenbergite crystals, as well as less common normally-zoned clinopyroxene with ferrohedenbergite rims and ferroaugite cores. Compared to the ferroaugite cores, the ferrohedenbergite rims are enriched in Dy and Yb, but depleted in Co, Ti, Sc, Ce, and Nd. The length scales for fast and slow diffusing elements for most gradients measured are indistinguishable, which argues that the gradients emerged predominantly from changing magmatic composition during crystallization, with diffusion having little to no role in establishing the concentration gradients. Fractional crystallization of the phases present in the rhyolites fails to reproduce all trace-element zonation that occur in the clinopyroxene, however, indicating a more complex origin. Based on the compositional similarity of the ferroaugite cores with pyroxene from rhyolites that erupted ≥ 165 kyr earlier, we interpret the ferroaugite cores as antecrysts scavenged from crystal-rich mush during magmatic rejuvenation. The magmatic rejuvenation that remobilized the parent mush of the ferroaugite antecrysts was likely initiated near the end of a &gt; 100 kyr eruption hiatus that preceded the final runup to the catastrophic Tshirege eruption.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02187-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compositionally zoned crystals can record changing melt composition and trace element partitioning behavior during magmatic differentiation. Diffusive reequilibration between compositionally distinct zones in crystals can also produce compositional gradients. Here, we compare the length scales of concentration gradients for different elements in clinopyroxene that originate from the Tshirege Tuff and late Valle Toledo Member rhyolites of the Bandelier magmatic system in New Mexico to determine what petrogenetic information is recorded in the zonation. Within these rhyolites there are unzoned ferrohedenbergite crystals, as well as less common normally-zoned clinopyroxene with ferrohedenbergite rims and ferroaugite cores. Compared to the ferroaugite cores, the ferrohedenbergite rims are enriched in Dy and Yb, but depleted in Co, Ti, Sc, Ce, and Nd. The length scales for fast and slow diffusing elements for most gradients measured are indistinguishable, which argues that the gradients emerged predominantly from changing magmatic composition during crystallization, with diffusion having little to no role in establishing the concentration gradients. Fractional crystallization of the phases present in the rhyolites fails to reproduce all trace-element zonation that occur in the clinopyroxene, however, indicating a more complex origin. Based on the compositional similarity of the ferroaugite cores with pyroxene from rhyolites that erupted ≥ 165 kyr earlier, we interpret the ferroaugite cores as antecrysts scavenged from crystal-rich mush during magmatic rejuvenation. The magmatic rejuvenation that remobilized the parent mush of the ferroaugite antecrysts was likely initiated near the end of a > 100 kyr eruption hiatus that preceded the final runup to the catastrophic Tshirege eruption.

Abstract Image

班德利尔岩浆体系中晶体糊状再活化:来自斜辉二岩成分分带的证据
成分分带晶体可以记录岩浆分异过程中熔体成分的变化和微量元素的分配行为。晶体中不同成分区之间的扩散再平衡也会产生成分梯度。在此,我们比较了新墨西哥州Bandelier岩浆系统Tshirege凝灰岩和Valle Toledo晚期流纹岩中斜辉石中不同元素浓度梯度的长度尺度,以确定在分带中记录了哪些成岩信息。在这些流纹岩中,有不分带的铁钙辉石晶体,以及不常见的带铁钙辉石边缘和铁辉石芯的正分带斜辉石。与铁辉石岩心相比,铁钙铁石岩心富集Dy和Yb,而富集Co、Ti、Sc、Ce和Nd。大多数梯度的快扩散元素和慢扩散元素的长度尺度难以区分,这表明梯度主要是由结晶过程中岩浆成分的变化产生的,扩散对浓度梯度的建立几乎没有作用。流纹岩中存在的相的分异结晶不能重现斜辉石中出现的所有微量元素分带,表明其起源更为复杂。基于铁长石岩心与早喷发≥165 kyr流纹岩辉石的成分相似性,我们认为铁长石岩心是岩浆恢复过程中从富晶泥中清除的反晶。重新激活铁辉石矿矿的母岩的岩浆复兴很可能是在灾难性的赤日火山喷发的最后一次爆发之前的100年喷发间隙结束时开始的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信