A Stable Method for Estimating the Derivatives of Potential Field Data Based on Deep Learning

Yandong Liu;Jun Wang;Weichen Li;Fang Li;Yuan Fang;Xiaohong Meng
{"title":"A Stable Method for Estimating the Derivatives of Potential Field Data Based on Deep Learning","authors":"Yandong Liu;Jun Wang;Weichen Li;Fang Li;Yuan Fang;Xiaohong Meng","doi":"10.1109/LGRS.2024.3505873","DOIUrl":null,"url":null,"abstract":"The estimation of the derivatives is an important part of potential field data processing and interpretation. In literature, a lot of methods have been presented to estimate the derivatives accurately and stably. However, existing methods still have some limitations. For example, the derivative estimation of high-noise data is unstable, and the determination of some parameters is difficult. To solve the problems of the classical methods mentioned above, a stable method for estimating the derivatives of potential field data based on deep learning is proposed. The proposed method constructs the network based on U-Net and builds a nonlinear mapping relationship between the noisy data and the derivatives of potential field data. After training with the designed datasets, the proposed network achieved the ability to eliminate the influence of noise and intelligently estimate the derivatives of potential field data. The proposed method is tested on synthetic data and real data in the Goiás Alkaline Province, Brazil, taking estimating the vertical derivatives of gravity anomaly as examples. The results indicate that the proposed method generates stable and accurate derivatives with the noisy data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10767251/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of the derivatives is an important part of potential field data processing and interpretation. In literature, a lot of methods have been presented to estimate the derivatives accurately and stably. However, existing methods still have some limitations. For example, the derivative estimation of high-noise data is unstable, and the determination of some parameters is difficult. To solve the problems of the classical methods mentioned above, a stable method for estimating the derivatives of potential field data based on deep learning is proposed. The proposed method constructs the network based on U-Net and builds a nonlinear mapping relationship between the noisy data and the derivatives of potential field data. After training with the designed datasets, the proposed network achieved the ability to eliminate the influence of noise and intelligently estimate the derivatives of potential field data. The proposed method is tested on synthetic data and real data in the Goiás Alkaline Province, Brazil, taking estimating the vertical derivatives of gravity anomaly as examples. The results indicate that the proposed method generates stable and accurate derivatives with the noisy data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信