{"title":"Multi-Layered Surface Estimation for Low-Cost Optical Coherence Tomography","authors":"Joshua Rapp;Hassan Mansour;Petros Boufounos;Toshiaki Koike-Akino;Kieran Parsons","doi":"10.1109/TCI.2024.3497602","DOIUrl":null,"url":null,"abstract":"Optical coherence tomography (OCT) has broad applicability for 3D sensing, such as reconstructing the surface profiles of multi-layered samples in industrial settings. However, accurately determining the number of layers and their precise locations is a challenging task, especially for low-cost OCT systems having low signal-to-noise ratio (SNR). This paper introduces a principled and noise-robust method of detection and estimation of surfaces measured with OCT. We first derive the maximum likelihood estimator (MLE) for the position and reflectivity of a single opaque surface. We next derive a threshold that uses the acquisition noise variance and the number of measurements available to set a target probability for false acceptance of spurious surface estimates. The threshold and MLE are then incorporated into an algorithm that sequentially detects and estimates surface locations. We demonstrate reconstruction of fine details in samples with optical path lengths around 1 mm and depth error down to 1.5 \n<inline-formula><tex-math>$\\mathrm{\\mu }$</tex-math></inline-formula>\nm despite SNRs as low as –10 dB.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1706-1721"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752415/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Optical coherence tomography (OCT) has broad applicability for 3D sensing, such as reconstructing the surface profiles of multi-layered samples in industrial settings. However, accurately determining the number of layers and their precise locations is a challenging task, especially for low-cost OCT systems having low signal-to-noise ratio (SNR). This paper introduces a principled and noise-robust method of detection and estimation of surfaces measured with OCT. We first derive the maximum likelihood estimator (MLE) for the position and reflectivity of a single opaque surface. We next derive a threshold that uses the acquisition noise variance and the number of measurements available to set a target probability for false acceptance of spurious surface estimates. The threshold and MLE are then incorporated into an algorithm that sequentially detects and estimates surface locations. We demonstrate reconstruction of fine details in samples with optical path lengths around 1 mm and depth error down to 1.5
$\mathrm{\mu }$
m despite SNRs as low as –10 dB.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.