Knowledge-Aware Parameter Coaching for Communication-Efficient Personalized Federated Learning in Mobile Edge Computing

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mingjian Zhi;Yuanguo Bi;Lin Cai;Wenchao Xu;Haozhao Wang;Tianao Xiang;Qiang He
{"title":"Knowledge-Aware Parameter Coaching for Communication-Efficient Personalized Federated Learning in Mobile Edge Computing","authors":"Mingjian Zhi;Yuanguo Bi;Lin Cai;Wenchao Xu;Haozhao Wang;Tianao Xiang;Qiang He","doi":"10.1109/TMC.2024.3464512","DOIUrl":null,"url":null,"abstract":"Personalized Federated Learning (pFL) can improve the accuracy of local models and provide enhanced edge intelligence without exposing the raw data in Mobile Edge Computing (MEC). However, in the MEC environment with constrained communication resources, transmitting the entire model between the server and the clients in traditional pFL methods imposes substantial communication overhead, which can lead to inaccurate personalization and degraded performance of mobile clients. In response, we propose a Communication-Efficient pFL architecture to enhance the performance of personalized models while minimizing communication overhead in MEC. First, a Knowledge-Aware Parameter Coaching method (KAPC) is presented to produce a more accurate personalized model by utilizing the layer-wise parameters of other clients with adaptive aggregation weights. Then, convergence analysis of the proposed KAPC is developed in both the convex and non-convex settings. Second, a Bidirectional Layer Selection algorithm (BLS) based on self-relationship and generalization error is proposed to select the most informative layers for transmission, which reduces communication costs. Extensive experiments are conducted, and the results demonstrate that the proposed KAPC achieves superior accuracy compared to the state-of-the-art baselines, while the proposed BLS substantially improves resource utilization without sacrificing performance.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"321-337"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684447/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized Federated Learning (pFL) can improve the accuracy of local models and provide enhanced edge intelligence without exposing the raw data in Mobile Edge Computing (MEC). However, in the MEC environment with constrained communication resources, transmitting the entire model between the server and the clients in traditional pFL methods imposes substantial communication overhead, which can lead to inaccurate personalization and degraded performance of mobile clients. In response, we propose a Communication-Efficient pFL architecture to enhance the performance of personalized models while minimizing communication overhead in MEC. First, a Knowledge-Aware Parameter Coaching method (KAPC) is presented to produce a more accurate personalized model by utilizing the layer-wise parameters of other clients with adaptive aggregation weights. Then, convergence analysis of the proposed KAPC is developed in both the convex and non-convex settings. Second, a Bidirectional Layer Selection algorithm (BLS) based on self-relationship and generalization error is proposed to select the most informative layers for transmission, which reduces communication costs. Extensive experiments are conducted, and the results demonstrate that the proposed KAPC achieves superior accuracy compared to the state-of-the-art baselines, while the proposed BLS substantially improves resource utilization without sacrificing performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信