{"title":"On the isoperimetric Riemannian Penrose inequality","authors":"Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri","doi":"10.1002/cpa.22239","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Riemannian Penrose inequality holds for asymptotically flat 3-manifolds with nonnegative scalar curvature and connected horizon boundary, provided the optimal decay assumptions are met, which result in the <span></span><math>\n <semantics>\n <mo>ADM</mo>\n <annotation>$\\operatorname{ADM}$</annotation>\n </semantics></math> mass being a well-defined geometric invariant. Our proof builds on a novel interplay between the Hawking mass and a potential-theoretic version of it, recently introduced by Agostiniani, Oronzio, and the third named author. As a consequence, we establish the equality between <span></span><math>\n <semantics>\n <mo>ADM</mo>\n <annotation>$\\operatorname{ADM}$</annotation>\n </semantics></math> mass and Huisken's isoperimetric mass under the above sharp assumptions. Moreover, we establish a Riemannian Penrose inequality in terms of the isoperimetric mass on any 3-manifold with nonnegative scalar curvature, connected horizon boundary, and which supports a well-posed notion of weak inverse mean curvature flow (IMCF). In particular, such isoperimetric Riemannian Penrose inequality does not require the asymptotic flatness of the manifold. The argument is based on a new asymptotic comparison result involving Huisken's isoperimetric mass and the Hawking mass.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 5","pages":"1042-1085"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22239","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that the Riemannian Penrose inequality holds for asymptotically flat 3-manifolds with nonnegative scalar curvature and connected horizon boundary, provided the optimal decay assumptions are met, which result in the mass being a well-defined geometric invariant. Our proof builds on a novel interplay between the Hawking mass and a potential-theoretic version of it, recently introduced by Agostiniani, Oronzio, and the third named author. As a consequence, we establish the equality between mass and Huisken's isoperimetric mass under the above sharp assumptions. Moreover, we establish a Riemannian Penrose inequality in terms of the isoperimetric mass on any 3-manifold with nonnegative scalar curvature, connected horizon boundary, and which supports a well-posed notion of weak inverse mean curvature flow (IMCF). In particular, such isoperimetric Riemannian Penrose inequality does not require the asymptotic flatness of the manifold. The argument is based on a new asymptotic comparison result involving Huisken's isoperimetric mass and the Hawking mass.