Gabriel Plummer , Mikhail I. Mendelev , Othmane Benafan , John W. Lawson
{"title":"Interactions of austenite-martensite interfaces with Ni4Ti3 precipitates in NiTi shape memory alloy: A molecular dynamics investigation","authors":"Gabriel Plummer , Mikhail I. Mendelev , Othmane Benafan , John W. Lawson","doi":"10.1016/j.ijplas.2024.104203","DOIUrl":null,"url":null,"abstract":"<div><div>Precipitation of secondary phases is a common strategy used to control both the structural and functional properties of shape memory alloys. It can be used to promote nucleation of the martensitic transformation as well as improve cyclic stability. Less is understood about how precipitates affect the progression of an ongoing transformation, i.e., motion of austenite-martensite interfaces. In this study, we performed molecular dynamics simulations of the interaction of austenite-martensite interfaces moving in the NiTi alloy with Ni<sub>4</sub>Ti<sub>3</sub> precipitates. It was found that the nanoscale precipitates obstruct interface motion until a sufficient undercooling is reached. The simulation results can be quantitatively explained with thermoelastic effects – elastic deformation of the precipitates acts to oppose the thermodynamic driving force favoring the transformation. A simple model is proposed to predict a more difficult transformation in shape memory alloys with higher concentrations of and/or harder precipitates. Additionally, simulations of cyclic transformations implicate inelastic deformation at the precipitate-matrix interface as one mechanism responsible for the cyclic drift in transformation characteristics. Deformation originated in a thin, amorphous interfacial layer and expanded with increasing cycles.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"184 ","pages":"Article 104203"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003309","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Precipitation of secondary phases is a common strategy used to control both the structural and functional properties of shape memory alloys. It can be used to promote nucleation of the martensitic transformation as well as improve cyclic stability. Less is understood about how precipitates affect the progression of an ongoing transformation, i.e., motion of austenite-martensite interfaces. In this study, we performed molecular dynamics simulations of the interaction of austenite-martensite interfaces moving in the NiTi alloy with Ni4Ti3 precipitates. It was found that the nanoscale precipitates obstruct interface motion until a sufficient undercooling is reached. The simulation results can be quantitatively explained with thermoelastic effects – elastic deformation of the precipitates acts to oppose the thermodynamic driving force favoring the transformation. A simple model is proposed to predict a more difficult transformation in shape memory alloys with higher concentrations of and/or harder precipitates. Additionally, simulations of cyclic transformations implicate inelastic deformation at the precipitate-matrix interface as one mechanism responsible for the cyclic drift in transformation characteristics. Deformation originated in a thin, amorphous interfacial layer and expanded with increasing cycles.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.