Dynamic changes of abnormal muscle response during decompression procedures in double compression-type hemifacial spasm.

Surgical neurology international Pub Date : 2024-11-22 eCollection Date: 2024-01-01 DOI:10.25259/SNI_768_2024
Keita Fujii, Kentaro Mori, Akira Tamase, Hiroshi Shima, Motohiro Nomura, Tetsuya Yamamoto
{"title":"Dynamic changes of abnormal muscle response during decompression procedures in double compression-type hemifacial spasm.","authors":"Keita Fujii, Kentaro Mori, Akira Tamase, Hiroshi Shima, Motohiro Nomura, Tetsuya Yamamoto","doi":"10.25259/SNI_768_2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hemifacial spasm (HFS) is a neurovascular movement caused by vascular compression of the facial nerve in its root exit zone (REZ). Cases of HFS caused by double compression (DC) in both REZ and the cisternal portion (CP) have been sporadically reported. The nature of DC-type HFS is still not fully understood. Compression in CP is often overlooked, resulting in reoperation in DC-type HFS cases.</p><p><strong>Case description: </strong>A 48-year-old man with a 3-year history of left HFS was admitted to our department. Magnetic resonance imaging revealed that the vertebral artery (VA) passed around REZ of the facial nerve, and the anterior inferior cerebellar artery (AICA) was in contact with the facial nerve in CP. Microvascular decompression was performed while monitoring any abnormal muscle response (AMR). Although VA was dissected and detached from REZ, AMR showed only a transient decrease and the amplitude of the AMR wave soon recovered and subsequently increased. No other vessels compressing REZ beneath VA were found. AICA attached to the facial nerve in CP and was compressed upward by VA. When AICA was moved from the facial nerve in CP after the transposition of VA, AMR was immediately resolved. After surgery, the patient was completely free from HFS.</p><p><strong>Conclusion: </strong>In DC-type HFS, precise preoperative diagnosis and intraoperative identification of the culprit vessel are difficult. In DC-type HFS, decompression of one side of a vessel may exacerbate the compression of the other side. In such a case, AMR helps us become aware of compressions in CP that we may preoperatively overlook. AMR is useful for identifying the exact culprit vessels and recognizing any compression changes caused by intraoperative manipulations.</p>","PeriodicalId":94217,"journal":{"name":"Surgical neurology international","volume":"15 ","pages":"430"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical neurology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/SNI_768_2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hemifacial spasm (HFS) is a neurovascular movement caused by vascular compression of the facial nerve in its root exit zone (REZ). Cases of HFS caused by double compression (DC) in both REZ and the cisternal portion (CP) have been sporadically reported. The nature of DC-type HFS is still not fully understood. Compression in CP is often overlooked, resulting in reoperation in DC-type HFS cases.

Case description: A 48-year-old man with a 3-year history of left HFS was admitted to our department. Magnetic resonance imaging revealed that the vertebral artery (VA) passed around REZ of the facial nerve, and the anterior inferior cerebellar artery (AICA) was in contact with the facial nerve in CP. Microvascular decompression was performed while monitoring any abnormal muscle response (AMR). Although VA was dissected and detached from REZ, AMR showed only a transient decrease and the amplitude of the AMR wave soon recovered and subsequently increased. No other vessels compressing REZ beneath VA were found. AICA attached to the facial nerve in CP and was compressed upward by VA. When AICA was moved from the facial nerve in CP after the transposition of VA, AMR was immediately resolved. After surgery, the patient was completely free from HFS.

Conclusion: In DC-type HFS, precise preoperative diagnosis and intraoperative identification of the culprit vessel are difficult. In DC-type HFS, decompression of one side of a vessel may exacerbate the compression of the other side. In such a case, AMR helps us become aware of compressions in CP that we may preoperatively overlook. AMR is useful for identifying the exact culprit vessels and recognizing any compression changes caused by intraoperative manipulations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信