Autophagy as a way to remove DNA lesions.

Yuchen Lei, Daniel J Klionsky
{"title":"Autophagy as a way to remove DNA lesions.","authors":"Yuchen Lei, Daniel J Klionsky","doi":"10.1080/15548627.2024.2434784","DOIUrl":null,"url":null,"abstract":"<p><p>Type I topoisomerases (TOP1) are critical to remove the topological stress when DNA double strands are unwound. The TOP1 cleavage complexes (TOP1cc) are normally transient, and the stabilization of TOP1cc by its inhibitors, such as camptothecin (CPT), may lead to DNA damage and become cytotoxic. The proteasome pathway degrades trapped TOP1, which is necessary for the repair machinery to gain access to the DNA; however, this process is mainly described when the CPT concentration is high, at levels which are clinically unachievable. In a recently published study, Lascaux et al. identify macroautophagy/autophagy as a new pathway to remove DNA lesions upon clinically relevant low-dose CPT treatment. The autophagy receptor TEX264 binds to TOP1 and brings this protein and its bound DNA fragments to the phagophore; subsequently, they are ultimately delivered to the lysosome for degradation. This study demonstrates the role of autophagy in maintaining genome stability from a new perspective and reveals potential targets to deal with the resistance to TOP1cc inhibitors during cancer treatment.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2434784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Type I topoisomerases (TOP1) are critical to remove the topological stress when DNA double strands are unwound. The TOP1 cleavage complexes (TOP1cc) are normally transient, and the stabilization of TOP1cc by its inhibitors, such as camptothecin (CPT), may lead to DNA damage and become cytotoxic. The proteasome pathway degrades trapped TOP1, which is necessary for the repair machinery to gain access to the DNA; however, this process is mainly described when the CPT concentration is high, at levels which are clinically unachievable. In a recently published study, Lascaux et al. identify macroautophagy/autophagy as a new pathway to remove DNA lesions upon clinically relevant low-dose CPT treatment. The autophagy receptor TEX264 binds to TOP1 and brings this protein and its bound DNA fragments to the phagophore; subsequently, they are ultimately delivered to the lysosome for degradation. This study demonstrates the role of autophagy in maintaining genome stability from a new perspective and reveals potential targets to deal with the resistance to TOP1cc inhibitors during cancer treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信