Yukun An, Biao Zhang, Ming Yang, Qiyong Lin, Ping Zhou
{"title":"[Intestinal Polyp Segmentation Based on Histogram Equalization ResNet (PE-ResNet)].","authors":"Yukun An, Biao Zhang, Ming Yang, Qiyong Lin, Ping Zhou","doi":"10.12455/j.issn.1671-7104.240235","DOIUrl":null,"url":null,"abstract":"<p><p>Colonoscopy is an important technical means for screening early colorectal cancer lesions. Accurate segmentation of intestinal polyps helps improve the accuracy of screening. Early screening for lesions is of great significance for the prevention of colorectal cancer, and the segmentation of intestinal polyps is an important research direction. Although intestinal polyp segmentation based on deep learning has achieved acceptable performance, the color variation among intestinal endoscopic images significantly affects it. Based on the ResNet architecture, this study proposes an advanced PE-ResNet in which histogram equalization is used to reduce color influence. Experimental results on five datasets, including ClinicDB, demonstrate that the PE-ResNet model achieves improved performance in intestinal polyp segmentation.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":"48 6","pages":"607-612"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Colonoscopy is an important technical means for screening early colorectal cancer lesions. Accurate segmentation of intestinal polyps helps improve the accuracy of screening. Early screening for lesions is of great significance for the prevention of colorectal cancer, and the segmentation of intestinal polyps is an important research direction. Although intestinal polyp segmentation based on deep learning has achieved acceptable performance, the color variation among intestinal endoscopic images significantly affects it. Based on the ResNet architecture, this study proposes an advanced PE-ResNet in which histogram equalization is used to reduce color influence. Experimental results on five datasets, including ClinicDB, demonstrate that the PE-ResNet model achieves improved performance in intestinal polyp segmentation.