{"title":"Mesothelin expression prediction in pancreatic cancer based on multimodal stochastic configuration networks.","authors":"Junjie Li, Xuanle Li, Yingge Chen, Yunling Wang, Binjie Wang, Xuefeng Zhang, Na Zhang","doi":"10.1007/s11517-024-03253-2","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting tumor biomarkers with high precision is essential for improving the diagnostic accuracy and developing more effective treatment strategies. This paper proposes a machine learning model that utilizes CT images and biopsy whole slide images (WSI) to classify mesothelin expression levels in pancreatic cancer. By combining multimodal learning and stochastic configuration networks, a radiopathomics mesothelin-prediction system named RPMSNet is developed. The system extracts radiomic and pathomic features from CT images and WSI, respectively, and sends them into stochastic configuration networks for the final prediction. Compared to traditional radiomics or pathomics, this system has the capability to capture more comprehensive image features, providing a multidimensional insight into tissue characteristics. The experiments and analyses demonstrate the accuracy and effectiveness of the system, with an area under the curve of 81.03%, an accuracy of 73.67%, a sensitivity of 71.54%, a precision of 76.78%, and a F1-score of 72.61%, surpassing both single-modality and dual-modality models. RPMSNet highlights its potential for early diagnosis and personalized treatment in precision medicine.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"1117-1129"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03253-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting tumor biomarkers with high precision is essential for improving the diagnostic accuracy and developing more effective treatment strategies. This paper proposes a machine learning model that utilizes CT images and biopsy whole slide images (WSI) to classify mesothelin expression levels in pancreatic cancer. By combining multimodal learning and stochastic configuration networks, a radiopathomics mesothelin-prediction system named RPMSNet is developed. The system extracts radiomic and pathomic features from CT images and WSI, respectively, and sends them into stochastic configuration networks for the final prediction. Compared to traditional radiomics or pathomics, this system has the capability to capture more comprehensive image features, providing a multidimensional insight into tissue characteristics. The experiments and analyses demonstrate the accuracy and effectiveness of the system, with an area under the curve of 81.03%, an accuracy of 73.67%, a sensitivity of 71.54%, a precision of 76.78%, and a F1-score of 72.61%, surpassing both single-modality and dual-modality models. RPMSNet highlights its potential for early diagnosis and personalized treatment in precision medicine.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).