Extrajunctional CLDN10 cooperates with LAT1 and accelerates clear cell renal cell carcinoma progression.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Akifumi Onagi, Kotaro Sugimoto, Makoto Kobayashi, Yumi Sato, Yasuyuki Kobayashi, Kei Yaginuma, Satoru Meguro, Seiji Hoshi, Jyunya Hata, Yuko Hashimoto, Yoshiyuki Kojima, Hideki Chiba
{"title":"Extrajunctional CLDN10 cooperates with LAT1 and accelerates clear cell renal cell carcinoma progression.","authors":"Akifumi Onagi, Kotaro Sugimoto, Makoto Kobayashi, Yumi Sato, Yasuyuki Kobayashi, Kei Yaginuma, Satoru Meguro, Seiji Hoshi, Jyunya Hata, Yuko Hashimoto, Yoshiyuki Kojima, Hideki Chiba","doi":"10.1186/s12964-024-01964-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>In addition to their adhesive properties, cell adhesion molecules such as claudins (CLDNs) exhibit signaling ability to organize diverse cellular events. Although the CLDN-adhesion signaling stimulates or inhibits cancer progression, the underlying mechanism remains poorly established. Here, we verified whether and how CLDN10 promotes intracellular signals and malignant phenotypes in clear cell renal cell carcinoma (ccRCC).</p><p><strong>Methods: </strong>We developed a novel monoclonal antibody that specifically recognizes CLDN10. By immunohistochemistry using this antibody, the clinicopathological significance of aberrant CLDN10 expression in 165 ccRCC patients was determined. We next generated the ccRCC cells (786-O, ACHN, and OS-RC-2) expressing CLDN10, and compared their phenotypes with those of control cells. Immunoprecipitation-mass spectrometry was used to identify a CLDN10-interacting protein, followed by evaluation of its association with CLDN10 and loss-of-functions in ccRCC cells.</p><p><strong>Results: </strong>High CLDN10 expression predicted poor outcome in ccRCC patients and represented an independent prognostic marker for cancer-specific survival. Cell surface CLDN10 promoted cell viability, proliferation, and migration of ccRCC cells, as well as their tumor growth. CLDN10 also activated mTOR signaling and expression of downstream targets, including MYC target genes. Notably, we found that CLDN10 forms a complex with an amino acid transporter, LAT1, and that CLDN10-LAT1 signaling facilitates malignant phenotypes in ccRCC cells. Structural prediction and immunoprecipitation analysis results strongly suggest an interaction between CLDN10-TM1 (transmembrane domain 1) and LAT1-TM4.</p><p><strong>Conclusions: </strong>We conclude that CLDN10-LAT1 signaling drives ccRCC progression. Taken together with our previous findings on CLDN-Src-family kinases signaling, CLDNs propagate distinct intracellular signals depending on their association with different binding partners.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"588"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01964-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & aims: In addition to their adhesive properties, cell adhesion molecules such as claudins (CLDNs) exhibit signaling ability to organize diverse cellular events. Although the CLDN-adhesion signaling stimulates or inhibits cancer progression, the underlying mechanism remains poorly established. Here, we verified whether and how CLDN10 promotes intracellular signals and malignant phenotypes in clear cell renal cell carcinoma (ccRCC).

Methods: We developed a novel monoclonal antibody that specifically recognizes CLDN10. By immunohistochemistry using this antibody, the clinicopathological significance of aberrant CLDN10 expression in 165 ccRCC patients was determined. We next generated the ccRCC cells (786-O, ACHN, and OS-RC-2) expressing CLDN10, and compared their phenotypes with those of control cells. Immunoprecipitation-mass spectrometry was used to identify a CLDN10-interacting protein, followed by evaluation of its association with CLDN10 and loss-of-functions in ccRCC cells.

Results: High CLDN10 expression predicted poor outcome in ccRCC patients and represented an independent prognostic marker for cancer-specific survival. Cell surface CLDN10 promoted cell viability, proliferation, and migration of ccRCC cells, as well as their tumor growth. CLDN10 also activated mTOR signaling and expression of downstream targets, including MYC target genes. Notably, we found that CLDN10 forms a complex with an amino acid transporter, LAT1, and that CLDN10-LAT1 signaling facilitates malignant phenotypes in ccRCC cells. Structural prediction and immunoprecipitation analysis results strongly suggest an interaction between CLDN10-TM1 (transmembrane domain 1) and LAT1-TM4.

Conclusions: We conclude that CLDN10-LAT1 signaling drives ccRCC progression. Taken together with our previous findings on CLDN-Src-family kinases signaling, CLDNs propagate distinct intracellular signals depending on their association with different binding partners.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信