Biological and pharmacological roles of pyroptosis in pulmonary inflammation and fibrosis: recent advances and future directions.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Ya Liu, Danxia Wang, Xiang Liu, Haibin Yuan, Dan Liu, Yixiang Hu, Shipeng Ning
{"title":"Biological and pharmacological roles of pyroptosis in pulmonary inflammation and fibrosis: recent advances and future directions.","authors":"Ya Liu, Danxia Wang, Xiang Liu, Haibin Yuan, Dan Liu, Yixiang Hu, Shipeng Ning","doi":"10.1186/s12964-024-01966-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g., pyroptosis, necroptosis, ferroptosis, and cuproptosis). The pathogenesis of pulmonary fibrosis (PF), including idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases, involves a multifaceted interplay of factors such as pathogen infections, environmental pollutants, genetic variations, and immune dysfunction. This chronic and progressive interstitial lung disease is characterized by persistent inflammation, extracellular matrix (ECM) accumulation, and fibrotic alveolar wall thickening, which potentially contribute to deteriorated lung function. Despite recent advances in understanding pyroptosis, the mechanisms by which it regulates PF are not entirely elucidated, and effective strategies to improve clinical outcomes remain unclear. This review strives to deliver a comprehensive overview of the biological functions and molecular mechanisms of pyroptosis, exploring its roles in the pathogenesis of PF. Furthermore, it examines potential biomarkers and therapeutic agents for anti-fibrotic treatments.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"586"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01966-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g., pyroptosis, necroptosis, ferroptosis, and cuproptosis). The pathogenesis of pulmonary fibrosis (PF), including idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases, involves a multifaceted interplay of factors such as pathogen infections, environmental pollutants, genetic variations, and immune dysfunction. This chronic and progressive interstitial lung disease is characterized by persistent inflammation, extracellular matrix (ECM) accumulation, and fibrotic alveolar wall thickening, which potentially contribute to deteriorated lung function. Despite recent advances in understanding pyroptosis, the mechanisms by which it regulates PF are not entirely elucidated, and effective strategies to improve clinical outcomes remain unclear. This review strives to deliver a comprehensive overview of the biological functions and molecular mechanisms of pyroptosis, exploring its roles in the pathogenesis of PF. Furthermore, it examines potential biomarkers and therapeutic agents for anti-fibrotic treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信