OZONE THERAPY AMELIORATES LPS-INDUCED ACUTE LUNG INJURY IN MICE BY INHIBITING THE NLRP3/ASC/CASPASE-1 AXIS.

IF 2.7 3区 医学 Q2 CRITICAL CARE MEDICINE
SHOCK Pub Date : 2025-03-01 Epub Date: 2024-12-04 DOI:10.1097/SHK.0000000000002525
PengCheng Wang, QinYao Zhao, XiaoFang Zhu, ShuangJiao Cao, John P Williams, Jianxiong An
{"title":"OZONE THERAPY AMELIORATES LPS-INDUCED ACUTE LUNG INJURY IN MICE BY INHIBITING THE NLRP3/ASC/CASPASE-1 AXIS.","authors":"PengCheng Wang, QinYao Zhao, XiaoFang Zhu, ShuangJiao Cao, John P Williams, Jianxiong An","doi":"10.1097/SHK.0000000000002525","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Background: Acute lung injury (ALI) is a common respiratory emergency with high incidence and mortality. Among its main pathologic mechanisms is the rapid and intense inflammatory response. Ozone is a naturally occurring compound and is known for its properties as an oxidizing agent. Ozone therapy is the clinical application of a mixture of ozone (O 3 ) and oxygen, used within nontoxic, safe concentrations. It could be used for the treatment of several diseases. Ozone rectal insufflation (O 3 -RI) is a treatment in which medical O 3 is introduced into the rectum to treat and prevent disease. Although O 3 therapy exerts anti-inflammatory effects, its function in ALI remains unclear. The aim of this study was to preliminarily investigate the role and function of O 3 -RI in ALI. Methods: A mouse model of ALI was established by intratracheal administration of LPS. O 3 -RI was administered 4 h following the modeling procedure. Lung histopathology, lung wet/dry ratio, protein content in bronchoalveolar lavage fluid (BALF), and myeloperoxidase activity in lung tissues, as well as the number of inflammatory cells and inflammatory cytokines in BALF, were assessed. The expression levels of NOD-like receptor thermal protein domain associated protein (NLRP3)/apoptosis-associated speck-like protein (ASC)/caspase-1 axis-related proteins in lung tissues were examined by real-time fluorescence quantitative polymerase chain reaction and Western blotting. Results: Ozone therapy reduced the wet/dry ratio of lung tissue and total protein content in BALF and attenuated lung edema and microvascular leakage in ALI mice. Ozone therapy reduced the myeloperoxidase content in the lung tissue, the number of inflammatory cells, and the content of inflammatory cytokines in BALF and attenuated lung tissue inflammation in mice with ALI. Ozone therapy ameliorated lung tissue morphological damage in ALI mice. Ozone therapy downregulated the expression of NLRP3/ASC/caspase-1 axis-related proteins. Conclusion: Ozone therapy attenuated LPS-induced ALI in mice, possibly by inhibiting NLRP3/ASC/caspase-1 axis. Ozone therapy is a valuable potential therapeutic modality for ALI.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"487-494"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002525","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Background: Acute lung injury (ALI) is a common respiratory emergency with high incidence and mortality. Among its main pathologic mechanisms is the rapid and intense inflammatory response. Ozone is a naturally occurring compound and is known for its properties as an oxidizing agent. Ozone therapy is the clinical application of a mixture of ozone (O 3 ) and oxygen, used within nontoxic, safe concentrations. It could be used for the treatment of several diseases. Ozone rectal insufflation (O 3 -RI) is a treatment in which medical O 3 is introduced into the rectum to treat and prevent disease. Although O 3 therapy exerts anti-inflammatory effects, its function in ALI remains unclear. The aim of this study was to preliminarily investigate the role and function of O 3 -RI in ALI. Methods: A mouse model of ALI was established by intratracheal administration of LPS. O 3 -RI was administered 4 h following the modeling procedure. Lung histopathology, lung wet/dry ratio, protein content in bronchoalveolar lavage fluid (BALF), and myeloperoxidase activity in lung tissues, as well as the number of inflammatory cells and inflammatory cytokines in BALF, were assessed. The expression levels of NOD-like receptor thermal protein domain associated protein (NLRP3)/apoptosis-associated speck-like protein (ASC)/caspase-1 axis-related proteins in lung tissues were examined by real-time fluorescence quantitative polymerase chain reaction and Western blotting. Results: Ozone therapy reduced the wet/dry ratio of lung tissue and total protein content in BALF and attenuated lung edema and microvascular leakage in ALI mice. Ozone therapy reduced the myeloperoxidase content in the lung tissue, the number of inflammatory cells, and the content of inflammatory cytokines in BALF and attenuated lung tissue inflammation in mice with ALI. Ozone therapy ameliorated lung tissue morphological damage in ALI mice. Ozone therapy downregulated the expression of NLRP3/ASC/caspase-1 axis-related proteins. Conclusion: Ozone therapy attenuated LPS-induced ALI in mice, possibly by inhibiting NLRP3/ASC/caspase-1 axis. Ozone therapy is a valuable potential therapeutic modality for ALI.

臭氧治疗通过抑制NLRP3/ASC/caspase-1轴改善脂多糖诱导的小鼠急性肺损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SHOCK
SHOCK 医学-外科
CiteScore
6.20
自引率
3.20%
发文量
199
审稿时长
1 months
期刊介绍: SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信