Brussonol and komaroviquinone as inhibitors of the SARS-CoV-2 Omicron BA.2 variant spike protein: A molecular docking, molecular dynamics, and quantum biochemistry approach.

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Samuel J M Santos, Antoninho Valentini
{"title":"Brussonol and komaroviquinone as inhibitors of the SARS-CoV-2 Omicron BA.2 variant spike protein: A molecular docking, molecular dynamics, and quantum biochemistry approach.","authors":"Samuel J M Santos, Antoninho Valentini","doi":"10.1016/j.jmgm.2024.108914","DOIUrl":null,"url":null,"abstract":"<p><p>Since late 2019, humanity has faced the challenges posed by the COVID-19 pandemic, caused by the SARS-CoV-2 virus. The continuous evolution of SARS-CoV-2 has led to the emergence of multiple Variants of Concern (VOCs) and Variants of Interest (VOIs), posing significant risks to global health. SARS-CoV-2 infects host cells via the angiotensin-converting enzyme 2 (ACE2) receptors, facilitated by the spike (S) protein. Icetexane diterpenes, including brussonol and komaroviquinone, exhibit notable anti-inflammatory, antibacterial, antiviral, antiproliferative, and anticancer properties. Recent research has explored their potential as inhibitors of the SARS-CoV-2 3Clpro protease, showing promising efficacy comparable to Nirmatrelvir. This study investigates brussonol and komaroviquinone as potential inhibitors of the SARS-CoV-2 Omicron BA.2 variant spike protein using molecular docking, molecular dynamics simulations, and quantum biochemistry approaches. The stability and interaction energies of brussonol, komaroviquinone, and mefloquine with the SARS-CoV-2 Omicron BA.2 variant spike protein were evaluated. RMSD analysis demonstrated that komaroviquinone and mefloquine maintain more stable binding poses with the spike protein compared to various NAGs and glycans. Electrostatic potential maps revealed significant interactions with ASN603, a critical residue for ligand binding efficacy. Furthermore, this study addresses a gap in current research, as no studies were found that simulate the trimer of the SARS-CoV-2 BA.2 variant spike protein. Most existing studies focus on the monomer and often exclude the NAGs and glycans. This research underscores the importance of maintaining the NAGs and glycans in the trimer simulations, providing a more accurate representation of the protein's structure and its interactions with ligands. The findings indicate that both komaroviquinone and brussonol exhibit higher binding affinities compared to mefloquine. This study provides valuable insights into the molecular interactions of these compounds, highlighting their potential for further development as antiviral agents against SARS-CoV-2.</p>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"135 ","pages":"108914"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmgm.2024.108914","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Since late 2019, humanity has faced the challenges posed by the COVID-19 pandemic, caused by the SARS-CoV-2 virus. The continuous evolution of SARS-CoV-2 has led to the emergence of multiple Variants of Concern (VOCs) and Variants of Interest (VOIs), posing significant risks to global health. SARS-CoV-2 infects host cells via the angiotensin-converting enzyme 2 (ACE2) receptors, facilitated by the spike (S) protein. Icetexane diterpenes, including brussonol and komaroviquinone, exhibit notable anti-inflammatory, antibacterial, antiviral, antiproliferative, and anticancer properties. Recent research has explored their potential as inhibitors of the SARS-CoV-2 3Clpro protease, showing promising efficacy comparable to Nirmatrelvir. This study investigates brussonol and komaroviquinone as potential inhibitors of the SARS-CoV-2 Omicron BA.2 variant spike protein using molecular docking, molecular dynamics simulations, and quantum biochemistry approaches. The stability and interaction energies of brussonol, komaroviquinone, and mefloquine with the SARS-CoV-2 Omicron BA.2 variant spike protein were evaluated. RMSD analysis demonstrated that komaroviquinone and mefloquine maintain more stable binding poses with the spike protein compared to various NAGs and glycans. Electrostatic potential maps revealed significant interactions with ASN603, a critical residue for ligand binding efficacy. Furthermore, this study addresses a gap in current research, as no studies were found that simulate the trimer of the SARS-CoV-2 BA.2 variant spike protein. Most existing studies focus on the monomer and often exclude the NAGs and glycans. This research underscores the importance of maintaining the NAGs and glycans in the trimer simulations, providing a more accurate representation of the protein's structure and its interactions with ligands. The findings indicate that both komaroviquinone and brussonol exhibit higher binding affinities compared to mefloquine. This study provides valuable insights into the molecular interactions of these compounds, highlighting their potential for further development as antiviral agents against SARS-CoV-2.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信