Acoustic modeling of three-dimensional-printed fibrous sound absorbersa).

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Amulya Lomte, Yutong Xue, William Johnston, Guochenhao Song, J Stuart Bolton, Bhisham Sharma
{"title":"Acoustic modeling of three-dimensional-printed fibrous sound absorbersa).","authors":"Amulya Lomte, Yutong Xue, William Johnston, Guochenhao Song, J Stuart Bolton, Bhisham Sharma","doi":"10.1121/10.0034429","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, an analytical model was developed to predict the sound absorption performance of fibrous absorbers fabricated using an extrusion-based three-dimensional (3D) printing method. The proposed model employs geometric design parameters, including the average fiber diameter and the horizontal and vertical fiber separations, to calculate the porosity, static airflow resistivity, tortuosity, and viscous and thermal characteristic lengths. These transport parameters are then used within the Johnson-Champoux-Allard semiempirical formulation to predict the normal incidence sound absorption coefficient. The analytical model was validated by comparing the calculated properties with those obtained using the finite element-based hybrid numerical modeling method and those estimated through direct and indirect experimental measurements. Finally, by using the validated analytical model, the effect of each geometrical design parameter on the sound absorption performance of the 3D-printed fibrous absorbers was investigated, revealing that the absorption behavior is primarily controlled by the static airflow resistivity and showing that high absorption peaks and a broadband absorption profile can be achieved by adjusting the three geometrical parameters. This study highlights the potential of 3D printing to fabricate fibrous sound absorbers with tailored acoustic properties, offering a promising solution for advanced noise control materials.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"3757-3771"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034429","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an analytical model was developed to predict the sound absorption performance of fibrous absorbers fabricated using an extrusion-based three-dimensional (3D) printing method. The proposed model employs geometric design parameters, including the average fiber diameter and the horizontal and vertical fiber separations, to calculate the porosity, static airflow resistivity, tortuosity, and viscous and thermal characteristic lengths. These transport parameters are then used within the Johnson-Champoux-Allard semiempirical formulation to predict the normal incidence sound absorption coefficient. The analytical model was validated by comparing the calculated properties with those obtained using the finite element-based hybrid numerical modeling method and those estimated through direct and indirect experimental measurements. Finally, by using the validated analytical model, the effect of each geometrical design parameter on the sound absorption performance of the 3D-printed fibrous absorbers was investigated, revealing that the absorption behavior is primarily controlled by the static airflow resistivity and showing that high absorption peaks and a broadband absorption profile can be achieved by adjusting the three geometrical parameters. This study highlights the potential of 3D printing to fabricate fibrous sound absorbers with tailored acoustic properties, offering a promising solution for advanced noise control materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信